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ABSTRACT

The self-organization of active swimmers is interesting but not fully understood. Lighthill conjectured that the orderly configurations may
emerge passively from the hydrodynamic interactions rather than active control mechanism. To further test Lighthill’s conjecture, the effect
of active control on the propulsive performance of two self-propelled flapping plates in tandem configuration is studied. Different types of
external horizontal forces are applied at the leading edge of the following plate. It is found that the collective dynamic and propulsive perfor-
mance of the two-plate system are mainly affected by the mean value of the external horizontal force rather than its specific form. The
two-plate self-propelled system has certain ability to counteract a limited external intervention and maintain the orderly configuration by
adjusting the gap spacing between two plates. For a stable configuration, the external intervention hardly affects the propulsion velocity but
has a significant monotonic effect on the gap spacing and input work. Further, a simplified model is proposed to relate the external horizon-
tal force to the gap spacing between two plates and verified to be reliable by the numerical results. Moreover, the momentum and energy
transferred to fluid are investigated in terms of local vortical structures. It is revealed that the impulse of the wake vortex pair is hardly
affected by the external horizontal force, while its kinetic energy and the local dissipative energy vary monotonically with it. These results
may shed some light on the understanding of collective behaviors of living swimmers and robotic fish.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065256

I. INTRODUCTION

Collective behaviors of large aggregations of animals exist widely
in nature.1 Particularly interesting is that a large number of synchro-
nized active bodies self-organize into orderly patterns, like insect
swarms,2 fish schools,3,4 and bird flocks.5 The investigations of collec-
tive motion can bring new ideas to the research of evolutionary biol-
ogy,6 fluid engineering,7 swarm intellgence,8 and other fields, so it has
been a hot topic. Apart from the social traits, such as foraging and
defense from predators,9 the most quoted function of collective
motion is to extract energy from the surrounding fluid and enhance
propulsive performance through flow interactions.4,10,11 Consequently,

the role of hydrodynamics in collective motion has received consider-
able attention for several decades, but some issues remain open.12

One intriguing and important issue is the role of flow in the
emergent self-organizing behavior of collective locomotion. Weihs
used a two-dimensional inviscid model to predict that fish swimming
diagonally behind the upstream fish would particularly benefit from
the vortices shed by the upstream fish.3 The vortices help to drag the
following fish forward. The question arises whether passive hydrody-
namic forces bring the orderly configurations into play or whether
very elaborate control mechanisms act to maintain the orderly collec-
tive pattern. Lighthill conjectured that the orderly configuration is
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generated passively and spontaneously due to the hydrodynamic
effect.13 His conjecture seems to have not been experimentally or
numerically tested or observed until recent years.12,14,15

The experiments of directly observing the collective motions of liv-
ing fish and birds can reveal some fundamental characteristics and
mechanisms of fish schools,4 bird flocks,5 or fish moving through vortex
street.10 However, there are some constraints in experimental studies of
living animals in terms of operability and measurability. For example,
the kinematic motions of living animals are difficult to control, and the
force and power are hard to measure.16 Numerical or experimental sim-
ulation of a simplified multi-body self-propelled system is an effective
approach to study the hydrodynamic role of collective motion of real
organisms. Li et al.17 used three-dimensional numerical simulations of a
pair of schooling fish, with kinematics and geometry obtained from
experimental data, to examine their energetics and stability. Li et al.18

developed biomimetic fish-like robots to study the energy consumption
associated with swimming together in pairs. There are also some
works19,20 that model two-dimensional fish-like bodies under a traveling
wavy lateral motion to study the hydrodynamic interactions thereof.

Considering the fact that most fish and birds use flapping fins/
wings to generate propulsive performance, a more common simplified
model for studying the collective motion is two (or more) flapping
foils or flexible plates. This approach has been used to study the flow-
mediated interactions between passively flapping plates in the oncom-
ing flow21–24 as well as active flapping bodies.25–28 By fixing the bodies
in the oncoming flow, studies show that the force on the follower
depends on its interaction with vortices shed by the leader.29 However,
these studies of tandem bodies held at fixed streamwise positions with
prescribed flapping motions do not account for the feedback of fins/
wings to surrounding fluid.

A proven way to study the self-organized collective motion is to
allow the bodies free to propel in fluid and dynamically select their
speed and gap spacing.11,12,14–16,30–35 For example, Zhu et al.14 numer-
ically studied two self-propelled flexible plates swimming in tandem
with identical flapping motion. They found that after flapping for sev-
eral periods, the two plates spontaneously form an equilibrium gap
spacing. The gap spacing is about integer multiples of the natural spac-
ing of the vortex streets. Ramananarivo et al.15 found the same phe-
nomenon through experiments of arrays of flapping wings that propel
within a collective wake. To address Lighthill’s conjecture, they dis-
turbed the follower to deviate from its equilibrium position. They
found that the follower is subjected to a restoring force directed to the
equilibrium position. This restoring force comes from the fluid. And
more recently, Newbolt et al.32 and Yu et al.20 found that two airfoils
with different flapping amplitudes and frequencies can also spontane-
ously form a stable configuration. Lin et al.36 numerically confirmed
that two flapping foils can simultaneously converge to equilibrium gap
spacings in both lateral and longitudinal directions.

Current studies12,14,15 indicate that the self-organization of the
collective motion may be formed passively and spontaneously due to
the hydrodynamic effect, as Lighthill conjectured. These models all
adopted two (or multiple) self-propelled bodies with identical flapping
motion, without considering individual active adjustment from pecto-
ral fins or other propulsion modes. However, for actual collectives,
individuals within the formation may take the initiative to adjust their
own movements in response to changes in the surrounding environ-
ment. For example, individuals in the fish schools are known to

influence the foraging behavior of the group and the ability of a school
to navigate toward a target,9 by actively adjusting their swimming
speed/direction, relative positions with neighbors, etc. A variety of col-
lective models have been established to mimic how individual-level
movement regulation influences collective behaviors, such as Boids
model37 and Vicsek model.1 In these models, the complex emergent
behaviors may arise from the interaction of individual agents adhering
to a set of simple rules. These models have achieved great success in
capturing global behaviors. However, since the rules applied in the
models are artificially set based on phenomenological observations, for
the collections of actively moving swimmers in a fluid, the underlying
physical mechanism of individual-level actively control regulating
group behavior remains unclear and to be studied. It involves an in-
depth test of Lighthill’s conjecture.

In terms of propulsion modes, the fish swimming styles can usu-
ally be put into two major categories, one belongs to the body/caudal
fin (BCF) propulsion, where significant “flapping” action occurs only
at the caudal fin (producing more than 90% of thrust); the second is
the median/paired fin propulsion (MPF) and is achieved by “rowing”
movements of pectoral fins.38,39 It is estimated that most fish use BCF
modes for propulsion and rely on MPF modes for maneuvering and
stabilization.40 The advantages of these combined swimming modes
have inspired the development of man-made underwater devices that
integrate multiple propulsion modes for propulsion and maneuvering
purposes. For example, Liao et al.41 developed a biomimetic robotic
fish that uses an integrated oscillation and jet propulsive mechanism
to enable good swimming performance for small robotic fish. Wang
et al.42 formulas a 3D dynamic model for the robotic fish actuated by
pectoral and caudal fins which can produce multi-mode swimming. It
is seen that both active swimmer and robotic fish typically not only
rely on flapping motion to achieve efficient propulsion but also can
have some other active control mechanism to achieve maneuvering
and stabilization. However, the current simplified models for studying
the collective motion only adopt the flapping motion (oscillatory or
undulatory), which belongs to the BCF locomotion. To our knowl-
edge, there is no work that studies the effect of active control on the
coherence and propulsive performance of collective motion, but it is a
question worth investigating. In our simplified model of two tandem
self-propelled flapping plates, we study such an active control effect
(from the pectoral fins or other propulsion modes) by exerting an
external horizontal force on the leading edge of the following plate.

Also as pointed out by Oza et al.,33 the influence of hydrodynam-
ics on the self-organization of collection motion has been relatively
unexplored theoretically. A common way to understand the mecha-
nism of force generation and energy consumption by flapping plates/
foils is to relate them to the vorticity shedding patterns. Given the
kinematic motion of the bodies, the generation and evolution of such
vorticity distributions depend on unsteady large-scale boundary layer
separation. It is difficult to analyze using a simple analytical approach.
The complicated physics of vortex shedding remains an obstacle to a
quantitative analysis of vortex-body interactions in collective motion.
To quantify the influence of local vortical structures on the force of the
body, some vorticity-based force expressions are developed,43,44 which
may shed some light on the understanding the multiple-body/body-
vortex interaction problems.

At present, the in-depth testing of Lighthill’s conjecture is still lack-
ing. The question arises whether and to what extent stable the orderly
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configuration is. To address this, inspired by Ramananarivo et al.15 and
Peng et al.,12 we consider a particular version of the two tandem self-
propelled flapping-plates problem. The plates are driven by harmonic
plunging motions of identical frequency and amplitude. Unlike previous
works,12,14 an external horizontal force is exerted on the leading edge of
the following plate. Four types of external horizontal force, which repre-
sent active controls of following swimmer in the configurations, are
applied in our simulations. The influence of the external horizontal
forces on stable orderly pattern and propulsive performance has been
systematically investigated. We quantitatively study the momentum and
energy transfer in terms of local vortical structures as well.

The rest of the paper is organized as follows. The physical prob-
lem, governing equations, and numerical methods are described in
Sec. II. The results and discussions regarding the active control effect
on the propulsive performance (orderly configuration, swimming
speed, input work, etc.) and wake structures are given from a compre-
hensive numerical and theoretical investigation in Sec. III. The conclu-
sions are summarized in Sec. IV. Finally, the detailed introduction and
validation of the present methodology, the derivation of the simplified
dynamical model, and some supplementary material for quantitative
flow analysis are presented in Appendix A–D.

II. PROBLEM DESCRIPTION AND NUMERICAL
METHOD
A. Physical problem andmathematical formulation

As shown in Fig. 1(a), two flapping flexible plates with length L
swim in tandem. Each plate is driven at the leading edge by harmonic
plunging motion in the lateral direction,

yiðtÞ ¼ A cos ð2pftÞ; (1)

where yi is the lateral coordination of ith plate (i¼ 1, 2), A and f are
the plunging amplitude and frequency, respectively. t is the time. An
external loading FxEex is exerted on the leading edge of the following
plate. The purpose of applying an external horizontal loading is to
influence the interactions between the following plate and the wake
vortices of the leader. As shown in Fig. 1(b), four functional forms
of external horizontal loading FxEðtÞ are considered (cf. Table I).
T ¼ 1=f is the flapping period. FA, FB1; FB2, FC, and FD are all con-
stants. TC � T and TD � T=2. Force type A denotes a constant
external horizontal force. The period of FxEðtÞ of force types B and C
is T, and the period of force type D is T=2. Force type B is a har-
monic function, which may appear in the rowing motion of the
median/paired fin.40 Force types C and D are used in place of the
step function, which may come from the jet propulsive mecha-
nism;41 TC=T and 2TD=T are the duty cycles, which represent the
proportion of external force acting time to the flapping cycle. Dt
denotes the phase difference between the external horizontal loading
FxEðtÞ and the flapping motion y2ðtÞ.

The fluid motion is described by the incompressible
Navier–Stokes equations,

@u
@t

þ u � ru ¼ � 1
q
rpþ l

q
r2uþ f ; (2)

r � u ¼ 0; (3)

where u is the velocity, p the pressure, q the density of fluid, and l the
dynamic viscosity. f is the Eulerian force acting on the surrounding

FIG. 1. (a) Schematic diagram for the two
self-propelled plates driven by plunging
motions in a tandem configuration. G is
the gap spacing between the two plates.
FxEex is an external loading applied at the
leading edge of the following plate. yi is
the lateral coordination of the ith plate. L
is the length of each plate. U is the propul-
sion velocity. (b) Schematic diagram of
four (A, B, C, D) different types of external
horizontal force FxE as a function of time.

TABLE I. Functional forms of external horizontal loading FxEðtÞ in the simulations.

Force type Function of FxEðtÞ Mean value of FxEðtÞ; �FxE

A FA FA
B FB1 þ FB2 � cos ð2pðt � DtÞ=TÞ FB1
C

FC � FC cos ð2pðt � DtÞ=TCÞ; ðt � DtÞ
T

� bðt � DtÞ
T

c � TC

T
;

0;
ðt � DtÞ

T
� bðt � DtÞ

T
c > TC

T
:

8>><
>>:

FC � TC=T

D
FD � FD cos ð2pðt � DtÞ=TDÞ; 2ðt � DtÞ

T
� b2ðt � DtÞ

T
c � 2TD

T
;

0;
2ðt � DtÞ

T
� b2ðt � DtÞ

T
c > 2TD

T
:

8>><
>>:

2FD � TD=T
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fluid due to the immersed boundary (IB), as constrained by the veloc-
ity boundary condition.

The plates are assumed to be two-dimensional thin elastic beams
and their dynamics are governed by the nonlinear partial differential
equation,45

qsh
@2X
@t2

� @

@s
Eh 1�

���� @X@s
����
�1

 !
@X
@s

" #
þ EI

@4X
@s4

¼ Fs þ Fext ; (4)

where s is the Lagrangian coordinate along the plate, X is the position
vector of the plate, qsh is the structural linear mass density, Eh and EI
are the structural stretching rigidity and bending rigidity, respectively.
Fs is the Lagrangian force exerted on the plates by the surrounding
fluid. Fext ð¼ FxEexÞ represents the active control which only acts on
the leading edge of the following plate. In addition to satisfying Eq. (1),
the leading edge of the plate satisfies boundary conditions @X

@s ¼ ex and

�Eh 1� j @X@s j�1
� �

@X
@s þ EI @

3X
@s3 ¼ 0, where ex is the unit vector in the

x direction. �Eh 1� j @X@s j�1
� �

@X
@s þ EI @

3X
@s3 ¼ 0 and @2X

@s2 ¼ 0 are

imposed at the trailing edge.
The reference quantities L, q, and Uref are chosen to nondimen-

sionalize the above mathematical formulation, where Uref is the maxi-
mum flapping velocity of the plunging motion, i.e., Uref ¼ 2pAf . The
dimensionless parameters are defined as follows: the heaving amplitude
A/L, the Reynolds number Re ¼ qUref L=l, the bending stiffness
K ¼ EI=qU2

ref L
3, the stretching stiffness S ¼ Eh=qU2

ref L, the mass ratio
of the plates M ¼ qsh=qL and the gap spacing G/L. In the following
descriptions, A and G denote the normalized quantity A/L and G/L.

B. Numerical method

The Navier–Stokes equations are solved numerically by the lattice
Boltzmann method (LBM).46,47 The deformation and motion of flexi-
ble plate are described by structural equation which is solved by a finite
element method48 in the Lagrange coordinate independently. For each
plate, boundary conditions for the leading and trailing ends are
imposed. The movement of each plate (Lagrange points) is coupled
with the LBM solver through immersed boundary (IB) method. The
body force f in Eq. (2) represents an interaction force between the
fluid and the immersed boundary to enforce the no-slip velocity
boundary condition, which on the Eulerian points can be obtained
from the Lagrangian force Fs using the Dirac d function.49 See
Appendix A for a detailed description of the numerical method. The
validations of the numerical method and grid spacing used in the pre-
sent study are shown in Appendix B.

The above numerical strategy has been successfully applied to a
wide range of fluid–structure interaction problems, such as flow over
an inversed flexible plate,50 locomotion of one or more flexible flap-
ping plates.12,51,52 Similar numerical strategy was also independently
developed by De Rosis et al.,53–55 and was also successfully used to
study the aeroelastic problem of flexible flapping wings.26

Based on our convergence studies with different computational
domains, the computational domain is chosen as 45L� 30L in the x
and y direction. The mesh is uniform with spacing Dx ¼ Dy ¼ 0:01L.
The time step is Dt=T ¼ 1=10 000 with T ¼ 1=f being the flapping
period. Such grid spacing and time step can ensure that the Mach
number is sufficiently low to reduce deleterious compressibility effects

affecting the solution of the lattice Boltzmann equation (LBE). For
example, in our numerical validation case (see Fig. 13 in Appendix B),
the Mach number is less than 0.05. A finite moving computational
domain is used in the x direction. As the plate travels one mesh spac-
ing in the horizontal direction, the computational domain is shifted by
adding one layer at the inlet and removing one layer at the outlet.51

III. RESULTS AND DISCUSSION

In this paper, the self-organization of two flapping plates swim-
ming in tandem, under the intervention of an active horizontal load-
ing, is investigated numerically and qualitatively. The controlled
nondimensional parameters used in the simulations are listed in
Table II. Because this paper focuses on the underlying mechanism of
self-organization of collective motion rather than the influence laws of
different parameters on propulsion performance, only two groups
of parameters are selected. Here, the stretching deformation can be
ignored, since the stretching stiffness of plate is large enough. The
bending stiffness is O(1) which is within the bending stiffness of real
fish.51 Since atM¼ 0.2, an isolated plate with K¼ 1 achieves the maxi-
mum cruising speed, the mass ratio is set M¼ 0.2 in our simulation.
These parameters are also consistent with case “1A” and case “2A” in
Zhu et al.,14 and show reasonably high propulsive performance. For
the sake of generality, case 1 and case 2 are of 2P mode (in which two
vortices with the same sign are shed within half cycle) and of 2Smode
(in which one vortex is shed with in half cycle), respectively.

The previous works12,14 indicate that the orderly configurations
of two flapping plates swimming in tandem can be categorized into
compact configuration and regular configuration. For the former, the
two plates are too closer and the vortex-body analysis is not so clear as
that in the regular form. Hence, in the present study, we focus on the
regular configuration to analyze the effect of active control on the sta-
bility and propulsive performance of the two-plate system. For regular
configuration, the gap spacing between the plates of in-phase flapping
is usually about an integer multiple of the wavelength traced out by
the leading plate, k ¼ Ð t0þT

t0
Udt. It should be noted that, for regular

form, although the initial gap spacing and phase difference between
two plates affect the equilibrium gap spacing of final stable configura-
tion, they will not affect the relative position of the following plate in
the spatial periodic vortex street.14 The interaction between the follow-
ing plate and wake vortices of the leader depends only on flapping
amplitude, frequency, and active control. Hence, the initial gap spacing
and phase difference are not discussed in this paper.

A. The emergence of stable configuration

To explore the mechanism of the orderly formation,
Ramananarivo et al.15 applied an external torque on the following foil

TABLE II. Values of control parameters used in simulations.

Parameters Case 1 Case 2

Mass ratio, M 0.2 0.2
Heaving amplitude, A 0.5 0.2
Reynolds number, Re 200 200
Bending stiffness, K 0.8 3.0
Stretching stiffness, S 1000 1000
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by using a string-mass-pulley system, to make it deviate from its stable
position, and they found that the fluid would give a restoring force to
the following foil and make it return to its original equilibrium posi-
tion. Inspired by this work, we apply a time-dependent external hori-
zontal force on the leading edge of the following plate and investigate
the propulsive performance of the two-plate self-propulsion system
under external force intervention.

To intuitively describe the influence of the active horizontal load-
ing FxE on the evolution of orderly configurations of two plates, Fig. 2
shows the time history of the gap spacing G between two plates for the
compact configuration and the regular configuration of case 1, respec-
tively. For both configurations, the plates converge to the stable config-
urations after flapping for several periods. The equilibrium gap
spacings of compact configuration and regular configuration with
FxE¼ 0 are about 0:1k and 1:0k, respectively. At t ¼ 15T , an constant
external horizontal force FxE is applied on the leading edge of the fol-
lowing plate, and the gap spacing between two plates starts to change.
For FxE< 0, the gap spacing will decrease; and for FxE> 0, the gap
spacing will increase. For the compact configuration, the stable zone is
FxE 2 ½�0:9; 0:2�. It means when FxE 2 ½�0:9; 0:2�, the following
plate follows the leading plate compactly. when FxE < �0:9, the fol-
lowing plate will overtake the leading one; when FxE � 0:3, the

compact mode will be broken, the two plates will form a regular mode
(FxE¼ 0.3) or the following plate will be dropped by the leading plate
(FxE � 0:4). For the regular configuration, the stable zone is
FxE 2 ½�0:4; 0:3�; when FxE < �0:4, the following plate will form a
compact configuration with the leading plate (FxE � �0:9) or over-
take the leader (FxE � �1:0). A similar phenomenon was found in
case 2, which will not be shown here. In the following discussion, this
paper will focus on the emergent regular configuration.

Next, the stability of orderly configurations of two flapping flexi-
ble plates, with different types of external horizontal force exerting on
the following plate, is studied. Table I lists four different functional
forms of FxE. For force type B, FB1 is the mean value of periodic exter-
nal force, FB2 is the magnitude of the change of FxE (if FB2 ¼ 0, form B
degenerates to form A). For type C and D, 2FC and 2FD are the maxi-
mal (or minimal) instantaneous value of FxE, TC=T and 2TD=T are
the ratio of the interval that FxE is not zero to the total flapping period,
FC � TC=T and 2FD � TD=T are the mean value of FxE, respectively.
As is shown in Fig. 3(a), for case 1, whether or not the two plates can
form a stable configuration dependents only on FB1. The stable state is
independent of FB2. When the mean value of FxEðtÞ satisfies FB1 � 0:4
(or � �0:5), the following plate is subjected to a strong external
resistance (or thrust), the gap spacing between the two plates will

FIG. 2. Gap spacing G as a function of time for case 1 with an constant external horizontal force FxE exerted on the leading edge of the following plate at t=T ¼ 15.
k ¼ Ð t0þT

t0
Udt. (a) Compact configuration; (b) regular configuration.

FIG. 3. Parameter space for two independently flapping plates of case 1. The force types of external horizontal force FxEðtÞ include (a) type A and type B, (b) type C in Table I.
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increase (or decrease). And the stable regular configuration cannot be
formed. If FB1 is within the stable zone ½�0:4; 0:3�, the stable configu-
rations will be spontaneously formed by different flow-mediated inter-
actions for different FB1. Figure 3(b) also shows that the stable state
depends only on the mean value of the external force, FC � TC=T ,
which does not depend on the amplitude (FC) or interval of action
(TC) of the force alone. The stable space basically satisfies
FC � TC=T 2 ½�0:4; 0:3�. Our numerical simulations also confirm
that the stable space of force type D in case 1 also satisfies 2FD
�TD=T 2 ½�0:4; 0:3� (figure is not shown). A similar phenomenon is
found in case 2, where the corresponding stable space basically satisfies
�FxE 2 ½�0:3; 0:4�, and figures are not shown here. It is seen that the
state of orderly configuration does not depend on the functional form
of the external horizontal force, it just depends on the mean value of
the force �FxE .

The above results indicate that the two-plate system has certain
ability to counteract the limited horizontal force intervention and
maintain the orderly configuration. In other words, even if there is an
external force intervention on the following plate, the following plate
can harvest additional hydrodynamic force—through some specific
vortex-follower interactions—to balance it. This further confirms
Lighthill’s conjecture that the orderly configuration emerges passively
from the hydrodynamic interactions.

For stable configurations, different equilibrium positions corre-
spond to different vortex-plate interactions. For detailed analysis, the
cases with a constant external horizontal force FxE ¼ FA on the
following plate are considered first. Figure 4 shows the propulsive
performance as functions of FA for stable configurations. It is known
that the wake of the leading plate is approximately composed of
spatial periodic vortical structures, so there are multiple discrete
positions with identical propulsive performance for each set of
parameters, depending on the initial positions and phase difference
of the leading and following plates.14 Here we denote Geq;0 as the
equilibrium gap spacing for FA¼ 0, which is approximately integer
multiples of wavelength k. Figure 4(a) shows that applying an exter-
nal horizontal force on the following plate hardly changes the pro-
pulsion speed U of the two plates. With the increase in the active
external thrust, the equilibrium gap spacing between the plate plates
decreases gradually, and vice versa.

The input work W and propulsion efficiency g of the following
plate are shown in Fig. 4(b). It is noted that the oscillation of the lead-
ing edge of the plates and the work done by FxE on the following plate
are the energy inputs of the system. The input work is necessary to
maintain the self-propulsion of the plates because the plates have to
transfer energy to the fluid by interacting with it. It can be calculated
through the time integral of power Pfluid produced by the plate during
one flapping period, i.e.,

W ¼
ðt0þT

t0

Pfluiddt ¼
ðt0þT

t0

ðL
0
Frðs; tÞ � @X

@t
ðs; tÞds

 !
dt;

where Fr represents the force on the surrounding fluid from the plates.
To quantify the propulsive efficiency of the plate, the ratio of the
kinetic energy of the plate and the input power has been
employed,51 i.e., g ¼ 1

2MU2=W. It is seen from Fig. 4(b) that, the
bigger the external horizontal force FA, the greater the input work
W, the smaller the propulsive efficiency. The input work of the lead-
ing plate is not affected by the external horizontal force FxE on the
following plate (figure is not shown). It means that by exerting an
active thrust on the following plate, the energy consumption of the
system can be reduced while maintaining a stable configuration.

Figures 5(a) and 5(b) show the following plate’s leading edge tra-
jectories in the vortex street shed by the leading plate for case 1 and
case 2, respectively. All stable trajectories are in the envelope of the
blue line and the red line. For case 1, the stable trajectories vary
between vortex locking14 and “slaloming between vortices,”10 depend-
ing on the active horizontal force FxE; and for case 2, the stable trajec-
tories are closer to “vortex locking.” The stable trajectories of case 2
are much tighter than that of case 1.

To understand the influence of specific force type on propulsive
performance, we first analyze case 1 with force type C. Figure 6 shows
the propulsive performances as functions of FC. TC=T is the duty cycle.
It is seen that for a stable configuration with fixed TC=T , the greater
the amplitude (FC) of FxE, the greater the gap spacing Geq and the
input power W. Generally speaking, the propulsion velocity decreases
with the increase in FC, but its change is very small (about 1.5%). For
different TC=T , the tendencies of propulsive performance varying
with FC are similar. The case with TC=T ¼ 0:5 is chosen to analyze
the contributions of active horizontal force FxE and the constraint

FIG. 4. (a) Gap spacing Geq and propulsion velocity U, (b) input work W and propulsive efficiency g of the following plate as functions of mean value of external force
FxE ¼ FA for case 1 and case 2.
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vertical flapping motion to the input work, as shown in Fig. 6(d). It is
seen that, when an external thrust is applied on the following plate, the
input work contributed by flapping motion and the total input work
will decrease. But if an external drag is applied on the following plate
which causes negative work, there needs more input work done by the
flapping motion to maintain the stable configuration.

As can be seen from Fig. 3 and its corresponding analysis, the key
parameter affecting the stability of orderly configurations is the mean
value �FxE rather than its specific force function. To extract the key
parameter that affects the propulsive performance, the mean value �FxE

is preferred. Figure 7 shows the propulsion performances as functions
of �FxE for force type C and three other types of force. For force type C,

FIG. 5. Superimposition of the following plate’s leading-edge trajectory for (a) case 1 and (b) case 2 on vortex street generated by one plate in isolated swimming.

FIG. 6. (a) Equilibrium gap spacing Geq, (b) propulsion velocity U, (c) input work W of the following plate as functions of Fc with external force of type C. (d) For TC=T ¼ 0:5,
the total input work W, the work done by oscillation motion WOscillation, and the work done by FxE as functions of FC.
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�FxE ¼ FC � TC=T . Compared with Fig. 6, the propulsive performan-
ces of different cases are almost normalized to the same curve with the
change of the mean value �FxE . It means that the key parameter affect-
ing the propulsive performance is also the mean value rather than the
functional form of specific force.

To further support the above conclusion, we analyzed the influ-
ence of different force forms of the same mean external horizontal
force (�FxE ¼ �0:2) on the propulsive performance, and the results are
shown in Fig. 8. Figures 8(a)–8(d) show four different forms of FxEðtÞ

varying with time in one period, where v ð¼ _y2Þ represents the vertical
flapping velocity of the following plate. The four kinds of force are (a)
force type B with FB1 ¼ �0:2, and FB2 varying from 0.0 to 0.5; (b)
force type C with FC ¼ �0:4; TC=T ¼ 0:5; Dt=T varying from 0.0 to
1.0; (c) force type C with Dt=T ¼ 0:0; TC=T varying from 0.25 to 1.0;
(d) force type D with FD ¼ �0:4; TD ¼ 0:25; Dt=T varying from 0.0
to 1.0. Dt represents the phase difference between force FxE and the
flapping motion. For all four kinds, the variations of gap spacing Geq,
propulsion velocity U and input work W are within 1.5%, 0.2%, and

FIG. 7. (a) Equilibrium gap spacing Geq, (b) propulsion velocity U, (c) input work W as functions of �FxE with different types of external force.

FIG. 8. Propulsive performance for identical mean value (�FxE ¼ �0:2) of external force with different function forms: Gap spacing Geq, propulsion velocity U, input work W of
the following plate for (a) force type B with different force amplitude FB2 , (b) force type C with TC ¼ 0:5T ; Dt varying from 0 to T, (c) force type D with Dt ¼ 0, TC varying
from 0.25 to 1.0, (d) force type D with TD ¼ 0:25T ; Dt varying from 0 to T.
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0.4%, respectively. It indicates that the propulsive performance is very
little affected by the specific form of FxE under the condition of fixed
mean value �FxE .

B. Simplified model for the follower-wake interaction

To explain the above findings, a simplified model is formulated
to relate the external horizontal loading to the interaction of the fol-
lowing plate with the wake of the leading plate. See Appendix C for
the detailed derivation. The model assumes that the thrust on each
plate depends on the square of the plate’s vertical velocity relative to
the ambient fluid, and the drag scales with the square of that plate’s
propulsion velocity relative to the ambient fluid.32,56,57 In addition, an
external horizontal force FxEðtÞ is exerted on the following plate. The
motion of the leading plate can be regarded as an isolate plate swim-
ming in stationary fluid. Its vertical and horizontal velocities relative to
the ambient fluid are its own flapping velocity and propulsion velocity.
For a stable configuration, the thrust and drag are proportional to
_y21 / ðAf Þ2 andU2, respectively.

For the following plate, its relative velocity is its velocity minus
the leading plate’s wake velocity at the same horizontal position. The
horizontal velocity of the wake can be negligible. For a stable configu-
ration, the drag is also proportional to U2. The wake’s vertical velocity
at x¼ x2 is assumed identical to that of the leading plate swimming
through the same position. Then for a stable configuration of in-phase
flapping, the hydrodynamic thrust on the following plate is propor-
tional to ð _y2 � vðx2ÞÞ2 / U2

ref ½1� cos ð2pfDtÞ�. Here, Dt ¼ jx1
�x2j=U ¼ ðGeq þ LÞ=U . Finally, in the time-average sense of
Newton’s second law, the external horizontal force and gap spacing
between two plates satisfy the following nondimensional relation:

FxE ¼ ct
2
� ctcos 2p

Geq þ 1
k

� �
; (5)

where the first term on the right is contributed by the vertical velocity
vðx2Þ induced by the vortex street, which depends entirely on the flap-
ping parameters of the leading plate. The second term on the right of
Eq. (5) is contributed by the coupling between the vortex street and
the flapping following plate, which depends on the kinematic parame-
ters of both plates and external active intervention. It is seen from
expression Eq. (5) that, for stable regular configuration, the

equilibrium gap spacing depends on the mean value of the external
horizontal force rather than the force’s specific form.

For case 1 and case 2, the Strouhal number, St ¼ 2Af =U , is
about 0.182 and 0.156, respectively. Hence, in the current work, the
thrust coefficient ct are selected as 0.8 and 0.55,56,57 respectively. By
substituting the thrust coefficients into expression Eq. (5), we predict
the relationship between �FxE and Geq for case 1 and case 2, as shown
in Fig. 9. The numerical data on external horizontal force and equilib-
rium gap spacing for different types of forces are compared with the
theoretical prediction. It is seen that the data points in the numerical
simulation basically fall on the PSS of the theoretical curve, which
agrees with the stability analysis of Fig. 15 in Appendix C. It is noted
that the numerical data points do not occupy the whole PSS of the
curve due to the simplification of the model. The model ignores some
important factors such as the complex interactions of the following
plates with the vortex street, unsteady flow separation on the plates,
and the dissipation of vortices, etc.

C. Force and power linked to local vortical structures

The previous analysis indicates that, different external horizontal
force leads to different follower’s trajectory in the reversed K�arm�an
vortex street shed by the leader, as shown in Fig. 5. Different trajecto-
ries mean different interactions between the follower and the vortex
street, which results in different flow field characteristics, momentum
and energy transferred to the fluid. In this section, we first show the
characteristics of the flow field under different external horizontal
force, then link the momentum and energy transfer to local vortical
structures.

Figure 10 shows the instantaneous vortical structures for different
external active force (FxE ¼ �0:4, 0.0, and 0.3) in case 1. At the instan-
taneous moment, t¼ nT, the y-coordinate of the leading edge of the
plate is A (flapping amplitude), and the flapping direction begins to
change. From Fig. 10(a), it is seen that the following plate passes
through the vortex core of the stronger positive vortex in a pair of vor-
tices. By comparing Figs. 10(a)–10(c), it is seen that consistent with
Fig. 5(a), the trajectory gradually moves backward with the increase in
external force FxE. For FxE ¼ �0:4, the clockwise (or counterclock-
wise) vorticity generated on the following plate will merge with the
vortices of the same direction shed by the leading plate, and eventually

FIG. 9. Theoretical prediction and numerical simulation of the relation between external horizontal force on the following plate and the gap spacing Geq for (a) case 1 and (b)
case 2.
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form a larger vortex in the wake of the following plate. For FxE¼ 0.3,
the following plate slaloms between the vortex cores, the clockwise
(counterclockwise) vorticity generated on the following plate and the
counterclockwise (clockwise) vortices shed by the leading plate will
wind around each other. When the parameter FxE gradually increases
from �0.4 to 0.3, the vorticity separation on the following plate is
gradually strengthened, and the wake gradually transitions from the
state of “codirectional vortices merging” to the state of “opposite-
directional vortices winding.”

Different flow field structures indicate that the plates transfer
different momentum and energy to the surrounding flow field (see
Fig. 16 in Appendix D). The mean values of hydrodynamic force and
input work are key parameters. Hence, the relationship between the
external horizontal force and the change of the momentum and energy
of the flow field in a period is highlighted in the following analysis. As
shown in Fig. 10, after a period of self-propulsion, a pair of additional
vortices appear in the downstream of the following plate, of which the
domain is denoted by Vwk. Figure 17 in Appendix D shows statistics of
the strength of such a pair of vortices in the wake of the following
plate. It is seen that with the increase in FxE, the strength of the vortex
pair in the wake of the following plate gradually increases.

Next, we aim to quantitatively relate the characteristics of the
flow field with the propulsive performance under different vortex-
plate interactions. Considering that the propulsive performance of an
object is mainly related to the flow structures surrounding the
object,44,58,59 for two-dimensional incompressible flow, the hydrody-
namic force on the plates and the power that is transferred from the
plates to the fluid are expressed as

FðtÞ ¼ � dI
dt

þ F l þ FB þ FR; (6)

Pfluid tð Þ ¼ dK
dt

þ Uþ PB þ PR; (7)

where

I ¼
ð
VðtÞ

x � qxdV ; F l ¼ �
ð
VðtÞ

qx� udV ;

FB ¼
ð
@B

x � ðn� qaÞ þ x � quðx � nÞ½ �dS;
(8)

K ¼
ð
V
q
juj2
2

dV ; U ¼
ð
V
lx2dV ; PB ¼ � d

dt

ð
VB

q
juj2
2

dV :

(9)

Here VðtÞ denotes the material analysis domain, and has an external
boundary R; I and K represent the vortical impulse and kinetic energy,
with q being the fluid density, x being the position vector; F l is the
vortex force;43 U denotes the dissipation caused by enstropy, which is
directly related to the reduction of kinetic energy. n is the normal vec-
tor. a ¼ du=dt is the acceleration. @B and VB are the boundary and
domain of the body, respectively. Since the plates in our simulation
has no thickness, FB and PB are zero. Finally, FR and PR are surface
integrals on R, i.e.,

FR ¼
ð
R
x � quðx � nÞdSþ

ð
R
l x � ðn � rxÞ þ s½ �dS;

PR ¼
ð
R
ðpn� sÞ � udS;

where s ¼ lx� n is the viscous force.
The expressions Eqs. (6) and (7) are used to analyze the results of

flapping plates. For clarity, here we use case with FxE ¼ �0:4 as an
example to perform detailed analysis. VðtÞ is chosen as a material
analysis domain as shown in Fig. 10, letting R (denoted by the black
solid line) cutting as less vorticity as possible. Theoretically, when the
outer boundary R of the material domain satisfies: x ¼ 0 at and near
R, FR can be ignored.44 At t¼ nT, the material domain VðtÞð¼ VconÞ
consists of the vorticity on the left side of R. After a period of self-
propulsion, there is an additional pair of vortices appear in the mate-
rial domain, i.e., Vðt þ TÞ ¼ Vcon þ Vwk.

Figure 11 shows the time-dependent horizontal hydrodynamic
force Fx and power transferred to fluid Pfluid, where Fx is the stream-
wise component of F. It is seen that Fx and Pfluid calculated by Eqs. (6)
and (7) agree well with the standard results FSTD and PSTD. It is noted

that FSTD is calculated by the sum of
Ð L
0 Fsðs; tÞds on the two plates,

and PSTD is calculated by the sum of
Ð L
0 Frðs; tÞ � @xðs;tÞ@t ds on the two

plates. From Fig. 11(a), it is seen that the horizontal force contributed
by FR can be ignored because the outer boundary R hardly cuts

FIG. 10. The instantaneous vorticity fields for case 1 with (a) FxE ¼ �0:4, (b) FxE¼ 0.0, (c) FxE¼ 0.3 at t¼ nT and t ¼ ðnþ 1ÞT , respectively.
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vortices. Results also show that the force contributed by the vortex
force is positive and hardly changes with time. It is a natural result,
since the vortex force integral in the whole space is zero, i.e.,Ð
V1

qx� udV ¼ 0,43 the variation of F l is identical withÐ
V1�Vqx� udV . The latter changes slowly over time because its vari-

ation is caused by the weak induction and dissipation of vortices in the
wake. Previous works60 indicate that, for two-dimensional incom-
pressible steady flow with high Reynolds number, the vortex force con-
tributes to the total drag of the body. According to the analysis of Sec.
III B, the drag depends on the square of the horizontal velocity relative
to the ambient fluid. Since the variation of such horizontal velocity is
very small compared with the time-average propulsion velocity U, the
variation of the vortex force should also be small. This is another inter-
pretation for the characteristics of the vortex force. Figure 11(a) also
shows that the hydrodynamic thrust is mainly contributed by the
impulse force. As discussed in Sec. III B, the thrust depends on the
square of the vertical flapping velocity relative to the ambient, which
changes significantly over time. Hence, the time dependence of instan-
taneous hydrodynamic force FxðtÞ is mainly represented by the
impulse force term. Figure 11(b) shows that PR can be ignored, since
u � n on R can be ignored when the normal direction of the wake sec-
tion of the outer boundary R satisfies: n ¼ ex , as shown in Fig. 10. The
time dependence of the power transferred to the fluid is mainly con-
tributed by the kinetic energy term, which is positive for most of the
time of a period. The power transferred to dissipation is positive all the
time.

As shown in Fig. 10, the flow field at a certain moment has
one more pair of vortices than that of one period ago. To under-
stand the relationship between such additional vortex pair and the
transfer of the momentum and power from the plates to the fluid,
by choosing the special domain as shown in Fig. 10, we obtain the
following expressions by integrating Eqs. (6) and (7) over a period
of time,

Iwk ¼
ðtþT

t
FxEðt0Þdt0 � �

ðtþT

t
F lðt0Þdt0

 !
; (10)

Kwk ¼
ðtþT

t
Pðt0Þdt0 �

ðtþT

t
Uðt0Þdt0; (11)

where

Iwk ¼
ð
Vwk

x � qxdV ; Kwk ¼
ð
Vwk

q
juj2
2

dV :

Here Iwk and Kwk are the total impulse and kinetic energy of the near-
est pair of vortices downstream of the following plate respectively. The
first term on the right of Eq. (10) is the total momentum transferred
from the plate to the fluid in one period, which is contributed entirely
by the external horizontal force. The second term on the right of
Eq. (10) is the momentum to overcome the drag contributed by the
vortex force. The two terms on the right of Eq. (11) are the total energy
transferred to the fluid and the energy for dissipation respectively.
Figure 12(a) shows that the increase in horizontal momentum in a
period, Iwk � ex , is positive and hardly varies with the external horizon-
tal force. The momentum to overcome the drag contributed by the
vortex force is negative and increases with FxE. The sum of the above
two terms agrees well with the total momentum transferred to the
fluid. Figure 12(b) shows that the power transferred to the kinetic
energy of the fluid decreases as FxE increases, while the dissipation of
the fluid increases as FxE increase. This result is natural, since as shown
in Fig. 10, when FxE increases, the vortices shed by the following plate
will increase.

IV. CONCLUSIONS

In summary, the effect of an external horizontal force on the self-
organization of two self-propelled flapping plates in a tandem configu-
ration is studied in this paper. In the process of the two self-propelled
flapping plates moving forward, external horizontal forces of different
functional forms are applied to the leading edge of the following plate.
Results show that even with limited external active control, the orderly
configurations can still emerge passively from the hydrodynamic inter-
actions. This is further support to Lighthill’s conjecture. Of course, if
the external force intervenes too strongly, the orderly configuration
will be broken. Moreover, we find that the stability and propulsive per-
formance of the orderly configurations are mainly affected by the
mean value of the external horizontal force rather than its specific
functional form. To our knowledge, it is the first time that verifies
Lighthill’s conjecture in the condition of external active control and
find that the group cohesion is affected by the mean value of the exter-
nal horizontal force rather than its functional form.

The reversed K�arm�an vortex street shed by the leading plate has
a certain robustness to resist the active intervention and maintain

FIG. 11. (a) The horizontal hydrodynamic force Fx and (b) power transferred to the fluid Pfluid as functions of time for case 1 with FxE ¼ �0:4.
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orderly configurations of the collective motion. When the external
horizontal force is within a stable range, the plates propel in an orderly
configuration. Once the mean value (�FxE) of the external horizontal
force is out of the stable range, the follower will break free of the vortex
street, either colliding with (or passing over) the leader or being
dropped by it. For stable configurations, the bigger the mean value of
external horizontal force, the bigger the equilibrium gap spacing
between the two plates, and the more energy is transferred to the fluid.
With the increase in �FxE , the trajectory of the follower in the vortex
street gradually transfers from the “vortex locking” behavior to the
“slaloming between vortices” behavior. A simplified model is proposed
which relates the mean value of the active horizontal force to the gap
spacing of the two plates, which shows good agreement with the
numerical results.

Finally, the transfer of momentum and energy of the two-plate
system is investigated in terms of local vortical structures. The hori-
zontal component of the momentum transferred to the fluid is entirely
provided by the active horizontal force FxE. Results show that, for sta-
ble configuration, with the increase in �FxE , more vorticity is generated
on the following plate. The horizontal component of the impulse of a
pair of vortices in the wake of the following plate is almost not affected
by the active loading, while the momentum against the drag contrib-
uted by the vortex force increases linearly with �FxE . The kinematic
energy of a pair of vortices downstream of the following plate
decreases with the increase in external horizontal loading. However,
vortex dissipation of the flow field increases and the total energy out-
put eventually increases with the increase in �FxE .

Although the geometric shape and actuation are simplified, this
study is essential for understanding the underlying mechanism of col-
lective behavior in fish schools. It also inspires the development of
swarm intelligence. For example, with limited active control, the fol-
lower can explore the most energy-effective position in a stable
configuration.
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APPENDIX A: THE NUMERICAL METHOD DETAILS

In the present work, the kinetics of the fluid is governed by the
discrete lattice Boltzmann equation (LBE) of a single relaxation time
model,46,61,62 and the multi-block lattice Blotzmann technique63 has
been incorporated. The LBE with the Bhatnagar–Gross–Krook (BGK)
model64 is

fiðx þ eiDt; t þ DtÞ � fiðx; tÞ
¼ � 1

s
fiðx; tÞ � f eqi ðx; tÞ� �þ DtFi; i ¼ 0;…; 8; (A1)

where fi is the ith particle distribution function with discrete speed
ei at position x and time t. Dx and Dt are the grid spacing and time
step, respectively. s ¼ ð�=c2sDt þ 0:5Þ is the nondimensional relaxa-
tion time associated with kinematic viscosity �, where cs ¼
ðDx=DtÞ= ffiffiffi

3
p

is the lattice sound speed. The equilibrium distribu-
tion function f eqi and the forcing term Fi are defined as61,65

f eqi ¼ xiq 1þ ei � u
c2s

þ uu : ðeiei � c2s IÞ
2c4s

" #
; i ¼ 0;…; 8; (A2)

Fi ¼ 1� 1
2s

� �
xi

ei � u
c2s

þ ei � u
c4s

ei

 �

� f ; i ¼ 0;…; 8; (A3)

where xi is the weighting factor depending on the lattice model
(x0 ¼ 4=9; x1 ¼x2 ¼x3 ¼x4 ¼ 1=9; x5 ¼x6 ¼x7 ¼x8 ¼ 1=36).
q, u, and f are the macroscopic fluid density, velocity, and body
force, respectively, as defined in Eq. (2).

The mass density and velocity can be obtained by the distribu-
tion functions,

FIG. 12. The transfer of (a) momentum and (b) energy in a period calculated by Eqs. (10) and (11).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 101901 (2021); doi: 10.1063/5.0065256 33, 101901-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


q ¼
X
i

fi; (A4)

qu ¼
X
i

eifi þ 1
2
fDt: (A5)

Equation (4) for the plate is discretized by a finite element
method. The motion of the plate is handled by the corotational
scheme.48 In this scheme, a local coordinate system is envisioned to
move with each discrete element, and the element behaves linearly
relative to the moving coordinate system. Consequently, the nonlin-
earity of the problem goes to the coordinate transformation.

In the IB method, the Lagrangian interaction force Fs [used in
Eq. (4)] can be calculated by the feedback law,49

Fsðs; tÞ ¼ a
ðt
0
V f ðs; t 0 Þ � V sðs; t 0 Þ
h i

dt
0 þ b V f ðs; tÞ � V sðs; tÞ

� �
;

(A6)

where a and b are free parameters to enforce the no-slip condition,
which are selected based on Hua et al.51 V f is the fluid velocity at
the position of the body, which is obtained by interpolation

V f ðs; tÞ ¼
ð
C
uðx; tÞdðx � Xðs; tÞÞdx; (A7)

where the plate boundary C is denoted by the Lagrangian coordi-
nates Xðs; tÞ. The Eulerian body force f [used in Eq. (2)] can be cal-
culated as

f ðx; tÞ ¼ �
ð
C
Fsðs; tÞdðx � Xðs; tÞÞds: (A8)

In the present work, a four point regularized d function49 is used.

APPENDIX B: THE VALIDATION AND GRID
INDEPENDENCE STUDY

To validate the numerical method used in the present study,
the locomotion of two self-propelled plates swimming in tandem is
simulated with parameters A¼ 0.5, Re¼ 200, M¼ 0.2, K¼ 0.8,

S¼ 1000, and FxE¼ 0. The parameters in the simulation are identi-
cal to those in Zhu et al.14 Figure 13 shows the time history of the
propulsion velocities of the two plates. It is seen that the propulsion
velocities of both plates are consistent with those from Zhu et al.14

To study the grid independence and time step independence,
the locomotion of two self-propelled plates in a tandem configura-
tion with an external horizontal loading FxE on the following plate
is simulated. The parameters are A¼ 0.5, Re¼ 200, M¼ 0.2,
K¼ 0.8, S¼ 1000, and FxE is chosen as type C with FC ¼ �0:5 and
TC ¼ 0:5T . The propulsion velocity and horizontal force of the fol-
lowing plate in simulations with different mesh size and time
step size are shown in Fig. 14. It is seen that Dx=L ¼ 0:01 and
Dt=T ¼ 0:0001 are sufficient to achieve accurate results.

APPENDIX C: SIMPLIFIED DYNAMICAL MODEL

Here we consider the swimming of the flapping plates, labeled
i¼ 1, 2 for the leader and follower respectively. The plates swim
along the negative x direction, and the flapping function satisfies

FIG. 14. The grid independence and time step independence studies for the case with Re¼ 200, A¼ 0.5, M¼ 0.2, K¼ 0.8, S¼ 1000. The external force is described by
force type C in Table I with FC ¼ �0:5 and TC ¼ 0:5T . The time evolution of (a) the propulsion velocity U and (b) horizontal hydrodynamic force Fx of the following plate.

FIG. 13. Numerical validation. The time evolution of the propulsion velocity U of
the plates. Lines and symbols represent the present results and those in Ref. 14. In
the case, the key parameters are: Re¼ 200, A¼ 0.5, M¼ 0.2, K¼ 0.8, S¼ 1000,
FxE¼ 0, and the initial gap spacing G0 ¼ 7:0.
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y1ðtÞ ¼ y2ðtÞ ¼ A cos ð2pftÞ: (C1)

In addition, an external horizontal force FxEex is applied on the fol-
lower. According to Newton’s second law, there is

m€x1 ¼ �T1 þ D1; m€x2 ¼ FxE � T2 þ D2; (C2)

wherem is the mass of the plate, Ti and Di are the hydrodynamic thrust
and drag on the ith plate. Previous works32,56,57 indicate that the thrust
on each plate is proportional to the square of the plate’s vertical velocity
relative to the ambient fluid, and the drag depends on the square of that
plate’s propulsion velocity relative to the ambient fluid, i.e.,

Ti ¼ 1
2
qLct _yi � vðxiÞ

� 2
; Di ¼ 1

2
qLcd _xi � uðxiÞð Þ2; (C3)

where ct and cd are (constant) thrust and drag coefficients, q is the
fluid density, L is the length of the plate. It is noted that, according
to classic Blasius theory, the drag coefficient cdð� Re�1=2Þ is given
in terms of the Reynolds number. Hence, the drag force usually
scales as ðqlLÞ1=2U3=2.66 In our simulation, the Reynolds number is
constant, hence cd is constant, and the drag depends on the square
of swimming velocity relative to ambient fluid.

Since the leader always swims into still fluid, there is
uðx1Þ ¼ vðx1Þ ¼ 0, then

m€x1 ¼ 1
2
qL �ct _y

2
1 þ cd _x

2
1

� �
: (C4)

Integrating the above equation over one time period, the term on
the left will disappear, since the leader can be assumed as an iso-
lated, periodic swimmer. Then we can obtain

_x21 ¼ ct
cd

_y21 ; (C5)

where _x21 ¼ Ð t0þT
t0

_x21dt=T . For stable configurations, the form of _x1
should be a function like U1 þ B1ðtÞ, where U1 is the propulsive

velocity. Since usually jB1ðtÞj 	 jU1j, we can assume that _x21 ¼ U2
1 .

By Eq. (C1), we can obtain _y21 ¼ ð2pAf Þ2=2. Finally, for the leading
plate, there is

U1 ¼ 2pAf

ffiffiffiffiffiffiffi
ct
2cd

r
: (C6)

The following plate swims into the reversed K�arm�an vortex street
shed by the leading plate. Its dynamical equation is

m€x2 ¼ FxE þ 1
2
qL �ctð _y2 � vðx2ÞÞ2 þ cdð _x22 � uðx2ÞÞ2
h i

: (C7)

Usually horizontal velocity of the wake can be ignored, i.e.,
uðx2Þ ¼ 0. The vertical velocity of the wake in lab frame can be
assumed equal to the leader’s vertical flapping velocity as it swims
by,32 i.e., vðx2Þ ¼ _y1ðt � DtÞ, where Dt ¼ ðGeq þ LÞ=U1 is deter-
mined by the gap spacing between two plates. By Eq. (C1), there is

_y2 � v x2ð Þ� 2 ¼ 2pAtð Þ2 1� cos 4pftð Þ
2

þ 1� cos 4pf t � Dtð Þ� 
2


 �

� 2 2pAfð Þ2 cos 2pfDtð Þ � cos 4pft � 2pfDtð Þ
2


 �
:

(C8)

For the stable configuration of the collective locomotion, there is

m€x2 ¼ 0; _x22 ¼ _x21 ; ð _y2 � vðx2ÞÞ2 ¼ ð2pAf Þ2 1� cos ð2pfDtÞ
� �

:

Making time-average of Eq. (C7), we can obtain the following non-
dimensional relation:

�FxE ¼ ct
2
� ct cos 2p

Geq þ 1
k

� �
: (C9)

Figure 15 shows the relationship between the equilibrium gap
spacing Geq and the mean value �FxE of the external horizontal force,
which is calculated by Eq. (5). It is seen that within the range of a
wavelength k, the same mean value of the external horizontal force
(�F


xE for example) corresponds to two equilibrium gap spacings (G1

and G2). ðG1; �F


xEÞ is on the negative slope side (NSS) of the curve.

If the following plate is disturbed and deviates from this equilibrium
position, for example the gap space between two plates becomes
ðG1 � ldÞ, then the following plate will obtain a hydrodynamic force
�ð�F


xE6fdÞ. And the net horizontal force on the following plate will
be �fd, which pull the following plate closer to (or further away
from) the leading plate, and hence away from the equilibrium posi-
tion G1. This means that, for a given �F 


xE , G1 on NSS of the curve is
an unstable equilibrium gap spacing, and a small perturbation will
move it away from the equilibrium position. Using the same analy-
sis, we can find that G2 on the positive slope side (PSS) of the curve
is a stable gap spacing. If the following plate is disturbed and devi-
ates from this equilibrium position, the hydrodynamic force will
push the following plate back to the equilibrium position G2.

APPENDIX D: SOME SUPPORTING INFORMATION
FOR SEC. III C

Figure 16 shows the evolution of the force (Fx) on the plate
and the power (Pfluid) transferred to the fluid under the intervention
of different active loading. It is seen that, without an active loading
on the following plate, the evolution of force and power transfer on
the following plate is similar to that on the leading plate, except
there is a phase shift. For a thrust type of active intervention
(FxE ¼ �0:4 for example), the following plate obtains a hydrody-
namic drag to balance the active intervention by vortex locking

FIG. 15. Diagram of stability analysis of equilibrium gap spacing. ld > 0; fd > 0.
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behavior,14 as shown in Figs. 5(a) and 10(a). There is less power
transferred to the fluid. For a drag type of active intervention
(FxE¼ 0.3 for example), the following plate obtains more hydrody-
namic thrust by slaloming between vortices behavior,10 as shown in
Figs. 5(a) and 10(c), but there is more power transferred to the
fluid.

Figure 10 shows that, after a period of self-propulsion, a pair
of additional vortices appear in the downstream of the following
plate, of which the domain is denoted by Vwk. Figure 17 shows sta-
tistics of the strength of such a pair of vortices in the wake of the
following plate, which is calculated by

Ð
Vwk

jxj=2dV . The strength of
the newly generated vortices on the following plate is roughly esti-
mated by subtracting the strength of a pair of vortices shed by the
leading plate from

Ð
Vwk

jxj=2dV . It is seen that with the increase in
FxE, the strength of the vortex pair in the wake of the following plate
gradually increases. Especially when FxE> 0, the increase is very sig-
nificant. For 2D incompressible flow, the evolution of vorticity in
the flow field satisfies dx=dt ¼ �r2x, which means that the evolu-
tion of vorticity is contributed only by the viscosity diffusion effect.

Ignoring the viscosity effect, it can be generally believed that when
FxE< 0.1, the strength of the new vorticity generated by the follow-
ing plate is less than that of the leading plate.
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