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ABSTRACT

The mechanism behind stable aggregations of active swimmers is not fully understood. In particular, the in-depth quantitative explanations
are notably lacking. To address this, a vorticity-based force expression is proposed to study the collective behaviors of two two-dimensional
tandem flapping plates. The hydrodynamic force is directly related to the generation of vorticity on the plate and viscous forces resulting
from its subsequent evolution. For the first time, the physical process by which the interactions between the rear plate and the wake vortices
of the leader affects the hydrodynamic force is quantitatively elucidated and not based on simplified theory. The wake vortices of the leader
influence the hydrodynamic force on the rear plate indirectly by inducing an additional oncoming flow. The flow affects the generation of
vorticity, which mainly occurs on the head of the rear plate. The results show that, if the trajectory of the rear plate passes through the vortex
cores, vorticity generation on the rear plate is suppressed and the thrust effect is weakened. If the rear plate slaloms between the vortices, the
vorticity generation and the thrust effect are enhanced. We also found that the wake vortices of the leader has a certain ability to trap the
rear plate into orderly configurations—no matter the rear plate has a dissimilar flapping amplitude or is applied an external horizontal
loading—by adjusting the equilibrium position of the rear plate in it. The findings may shed some light on the understanding of collective
behaviors in swimming animals.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079818

I. INTRODUCTION

Fish schools and flying formations are fascinating examples of
collective behaviors in nature. Although there are numerous studies
on fish schools and bird flocks,1–5 the mechanism behind the orderly
formation of aggregation remains unclear.6 It is well known that an
individual in the groups may encounter complex vortices shedding
from surrounding individuals. Vortex–body interactions are impor-
tant. After a variety of experimental observations and numerical simu-
lations, there is a common perception that energy extraction from
environmental vortices is important to enhance the performance of
collective locomotion.2,5–16 However, quantitative information is lim-
ited because of the difficulty in measurement and lack of vorticity-
based theories.

The classic explanation for orderly formations is that each indi-
vidual adopts an optimal position to form a constructive interaction

with the environmental vorticity.2 Weihs believed that a diamond
configuration is energetically optimal for fish schooling. In recent
studies, other configurations are also found to show hydrodynamic
advantages.11,12,17 Thus, the optimal configuration in fish schools, in
particular, the underlying physical mechanism, remains controversial.
An important question arises whether the emergence of the stable con-
figuration is due to passive forces or elaborate control mechanisms.
Lighthill conjectured that for sufficiently fast locomotion, the orderly
formations may arise passively from the hydrodynamic interactions
without elaborate control,18 which is called Lighthill conjecture.13,19,20

A two-body system is the simplest model to investigate the collec-
tive behavior and the conjecture. Flow-mediated interactions between
two passively flapping filaments or flags in a flow8,21–23 as well as two
actively flapping bodies24–27 were studied. In these studies, the stream-
wise locations of the wings or foils were fixed. Their results show that
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the vortices shed by the front body interact with the rear one, which
leads to different propulsive performances of the rear one.26,28,29

However, there is no quantitative analysis of how the hydrodynamic
force of the rear plate depending on the interaction.

In addition to the above fixed flapping model, self-propelled flap-
ping models were proposed to study the Lighthill con-
jecture.6,13,17,19,20,30–33 These models are more realistic because each
individual in the group is free to select its propulsion speed and equi-
librium streamwise location. The studies of these self-propelled models
show that multiple stable configurations may emerge passively from
vortex–body interactions.17 Zhu et al.6 observed that the rear plate’s
trajectory is locked onto the vortex centers. They proposed a hypothe-
sized mechanism for the behavior, i.e., in this way the rear plate can
obtain energetic benefits by moving with the local lateral flow rather
than against it. However, the vortex locking behavior is not the only
choice of vortex–body interaction for orderly formations of tandem
configuration.7,34 Ramananarivo et al.13 found that in stable configura-
tions, when the rear foil is perturbed slightly, it will robustly return to
its equilibrium location. It seems that the rear foil experiences a spring-
like restoring force. To explain it, an interaction potential is con-
structed, in which the stable wells in an energy landscape correspond
to the observed equilibrium locations of the rear plate. Park and
Sung17 found four stable configurations (tandem, diagonal, triangular,
and diamond) for schools with more individuals and the effect of vor-
tex–body interactions on the propulsive performance was investigated
qualitatively. Newbolt et al.31 found that two foils with different flap-
ping motions swimming in tandem can also form stable configura-
tions, and the interaction of the follower with the vortex wake left by
the leader was analyzed by a simplified velocity-based model.

To quantitatively clarify the effect of vortex–body interaction,
vorticity-based representations and interpretations are required. There
are several classical vorticity-based theories or models used for the col-
lective locomotion dynamics, such as Wu’s linear (small-amplitude)
theory,35,36 the linear unsteady airfoil theory,37,38 and some extension
models.13,39,40 In the theoretical analysis of the vortex–body interac-
tion, a vortex sheet model, or a point vortex model, or the undistrib-
uted vortex street past an oscillating foil may be adopted. To some
extent, these theories shed some light on the mechanism for the stable
positioning of the rear body. On the other hand, in the theories, the
assumptions of small flapping amplitude, zero foil thickness, potential
flow, negligible nonlinear terms, or viscosity, etc. do not exactly match
the real situation. In addition, the theories are not able to describe the
physical process of vortex generation and shedding from the surface of
the rear body.

Due to advances in the experimental technique and numerical
simulation, it is possible to quantify the instantaneous vortex struc-
tures and interpret the vortex–body interaction under a theoretical,
vorticity-based framework. The impulse theory proposed by Wu41

provides the relationship between the force and the change rate of vor-
ticity moment in viscous flow. Despite its generality and neatness, the
theory has an inherent limitation that requires calculating the entire
vorticity field. Recently, a two-dimensional potential flow model in
terms of impulse theory has been proposed and a fruitful separation of
the main contributions due to added mass and to vorticity release is
obtained by decomposing the impulse into potential impulse and vor-
tical impulse.42,43 The extension of this model to viscous flow is signifi-
cant. Some recent studies show that there is no obvious one-to-one

connection between the swimming performance (thrust, power, and
efficiency) and the details of the wake structure.44 Therefore, the wake
structures and the propulsion performance should be treated as two
separate but inter-related topics. The hydrodynamic force exerted on a
self-propelled body is dominated by the local dynamic processes and
flow structures generated by the body motion. To quantify the effects
of local processes and structures, some unconventional vorticity-based
force expressions are proposed,45,46 which provide better insights into
local dynamics. Furthermore, inspired by the work of Li and Lu,47

Kang et al.48 proposed a minimum-domain impulse theory. Using the
theory, the entire force on the body can be completely determined by
only the time rate of the impulse of those vortical structures still con-
necting to the body, along with the Lamb-vector integral thereof.

Based on our previous work,48 here we further propose a quanti-
tative derivation of vorticity-based force theory which directly relates
the hydrodynamic force to the vorticity generation and evolution on
the body surface. The purpose of this paper is to apply the proposed
theory to quantitatively analyze the vortex–body interaction in viscous
fluid. The cases of hydrodynamic schooling of two two-dimensional
flapping flexible plates in tandem at low Reynolds number are consid-
ered. Different from previous numerical studies6,20,34 focusing on the
kinematic characteristics of collective motion (such as the gap spacing
and propulsive performance of the collective system), this paper pays
more attention to its dynamic characteristics and quantitative interpre-
tation of the influence of vortex–plate interaction on its force charac-
teristics, and further elucidates the underlying mechanism of
spontaneous formation of ordered configurations.

The outline of the paper is as follows. The physical problem and
numerical method are described in Sec. II. The force expressions in
terms of local vortical structures are given in Sec. III. The emergent
configurations and the correlation between hydrodynamic force and
vortex–body interactions are discussed in Sec. IV. In this section, the
hydrodynamic force on the plate is quantitatively analyzed in the
vorticity-based frame in terms of instantaneous flow structures. By
changing the flapping amplitude of the rear plate or applying external
loading on it, we study how stable the configuration is. Finally, con-
cluding remarks are addressed in Sec. V.

II. PHYSICAL PROBLEM AND NUMERICAL METHOD

As shown in Fig. 1, two flapping flexible plates in tandem with
length L are driven at the leading edge by harmonic plunging motions
of amplitude ai (i¼ 1, 2) and frequency f in a two-dimensional station-
ary viscous incompressible fluid. The forced lateral motions of the
leading edges are described by

y1ðtÞ ¼ a1 cos ð2pftÞ; y2ðtÞ ¼ a2 cos ð2pft � D/Þ; (1)

FIG. 1. Schematic diagram of the two two-dimensional self-propelled plates driven
by plunging motions yiðtÞ (i¼ 1, 2) in a tandem configuration. G(t) is the gap spac-
ing between the two plates. uiðtÞ is the streamwise velocity of the leading edge of
the ith plate. L is the length of the plates.
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where the subscripts 1 and 2 denote the front and rear plates, respec-
tively; D/ is the phase lag of the rear plate relative to the front plate.
uiðtÞ is the streamwise velocity of the leading edge of the ith plate.

To identify the underlying mechanism of the stable configura-
tion, the horizontal motions of the plates are set in three different
forms: (i) the plates are free to move in the horizontal direction in a
stationary fluid, as shown in Fig. 1, depending on the hydrodynamic
force; (ii) the streamwise locations of the leading edges of the plates
are fixed in the inertial coordinate system with a free oncoming flow;
and (iii) an external horizontal load is applied to the self-propelled
rear plate, which balances the net hydrodynamic force.

The fluid motion is described by the incompressible
Navier–Stokes equations,

r � u ¼ 0; (2)

a ¼ � 1
q
rpþ l

q
r2uþ f ; (3)

where u is the velocity, a ð¼ @u=@t þ u � ruÞ the acceleration, p is
the pressure, q is the density of fluid, and l is the dynamic viscosity. f
is the Eulerian force acting on fluid nodes.

The plates are assumed to be two-dimensional thin elastic beams,
and their dynamics are governed by the nonlinear partial differential
equation,49

qsh
@2X
@t2

� @

@s
Eh 1�

���� @X@s
����
�1

 !
@X
@s

" #
þ EI

@4X
@s4

¼ Fs; (4)

where s is the Lagrangian coordinate along the plate, X is the position
vector of the plate, qsh is the structural linear mass density, and Eh
and EI are the stretching and bending rigidities of the plates, respec-
tively. Fs is the Lagrangian force exerted on the plates by the surround-
ing fluid. In addition to satisfying Eq. (1), the leading edge of the plate
satisfies boundary conditions �Ehð1� j @X@s j�1Þ @X@s þ EI @

3X
@s3 ¼ 0 and

@X
@s ¼ ex; where ex is the unit vector in the x direction. At the free trail-

ing edge, we have�Ehð1� j @X
@s j�1Þ @X

@s þ EI @
3X
@s3 ¼ 0; @2X

@s2 ¼ 0.
The reference quantities L, q, and Uref are chosen to nondimen-

sionalize the above mathematical formulation, where Uref is the maxi-
mum flapping velocity of the plunging motion, i.e., Uref ¼ 2pa1f . The
dimensionless parameters are defined as follows: the heaving ampli-
tude Ai ¼ ai=L for plate i, the flapping Reynolds number
Ref ¼ qUref L=l, the bending stiffness K ¼ EI=qU2

ref L
3, the stretching

stiffness S ¼ Eh=qU2
ref L, the mass ratio of the plates M ¼ ql=qL, and

the gap spacing G/L. In the following descriptions, G denotes the nor-
malized quantity G/L.

The Navier–Stokes equations are solved numerically by the lattice
Boltzmann method (LBM).51,52 It is known that in the direct numerical
simulation of the incompressible Navier–Stokes equations, the pressure
satisfies a Poisson equation with velocity strains acting as sources.
Solving this equation for the pressure often produces numerical difficul-
ties requiring special treatment, such as iteration or relaxation. In con-
trast, the incompressible Navier–Stokes equations can be obtained in
the nearly incompressible limit of the LBM. The pressure of the LBM is
calculated using an equation of state.51 The deformation and motion of
flexible plate are described by a structural equation which is solved by a
finite element method in the Lagrange coordinate independently. For
each plate, boundary conditions for the leading and trailing ends are

imposed. The movement of each plate (Lagrange points) is coupled
with the LBM solver through an immersed boundary (IB) method,53

which is used to enforce the no-slip boundary condition. The
Lagrangian force Fs in Eq. (4) can be calculated by the feedback law,

53,55

Fsðs; tÞ ¼ a
ðt
0
uf ðs; t0Þ � usðs; t0Þ
� �

dt0 þ b uf ðs; tÞ � usðs; tÞ
� �

; (5)

where a and b are free parameters and are selected based on
Hua et al.50 us ¼ @X=@t is the plate velocity, and the fluid velocity uf
at X is interpolated from the velocities of the surrounding fluid nodes
u, i.e.,

uf ðs; tÞ ¼
ð
uðx; tÞdðx � Xðs; tÞÞdx: (6)

The body force f represents an Eulerian force on the fluid nodes, which
are close to the moving wall boundary. It can be obtained from the
Lagrangian force Fs using the Dirac d function, i.e.,

f ðx; tÞ ¼ �
ð
L
FsðX; tÞd x � Xðs; tÞ½ �ds: (7)

In our numerical simulation, a four-point regularized d function is
used,53

dh ¼ 1
DxDy

/
x
Dx

� �
/

y
Dy

� �
; (8)

where

/ðrÞ ¼
3� 2jrj þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4jrj � 4r2
p� 	

=8; jrj < 1;

5� 2jrj � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�7þ 12jrj � 4r2
p� 	

=8; 1 � jrj < 2;

0; jrj � 2;

8>>>><
>>>>:

(9)

where jrj denotes the distance between the Lagrangian point and the
nearby Eulerian grid points. See our previous work34,50 for more
details.

A finite moving computational domain is used in the x direction.
As the plate travels one mesh spacing in the horizontal direction, the
computational domain is shifted by adding one layer at the inlet and
removing one layer at the outlet.50 In the simulations, the Neumann
boundary condition @u=@x ¼ 0 is applied at the outlet, and the
Dirichlet boundary condition u ¼ 0 is applied at the inlet and other
two boundaries.

Through convergence study, the computational domain is chosen
as 45L� 30L in the x and y directions. The mesh is uniform with
spacing Dx ¼ Dy ¼ 0:01L. The time step is Dt=T ¼ 1=10 000 with
T ¼ 1=f being the flapping period. To validate the numerical method
in the present study, the locomotion of two self-propelled plates swim-
ming in tandem is simulated with parameters Ref ¼ 200, A¼ 0.5,
M¼ 0.2, K¼ 0.8, S¼ 1000. The parameters in the simulation are iden-
tical to those in Zhu et al.6 and Peng et al.20 Figure 2 shows the time
history of the propulsion velocity (u1) of the front plate. It is seen that
the propulsion velocity of the front plate is consistent with those from
Zhu et al.6 and Peng et al.20

Grid independence and time step independence studies are also
performed. The horizontal hydrodynamic force Fx and lateral
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displacement yTE of the rear plate in simulations with different mesh
size and time step size are shown in Fig. 3. The propulsion velocities
with different mesh size and time step size are shown in our previous
work.20 It is seen that Dx=L ¼ 0:01 and Dt=T ¼ 0:0001 are sufficient
to achieve accurate results.

III. DYNAMIC EXPRESSIONS IN TERMS OF LOCAL
FLOW STRUCTURES

To illustrate the dynamic expressions in terms of local flow struc-
tures, here we consider a typical external flow problem as shown in
Fig. 4(a): a material body of volume B moves arbitrary in an incom-
pressible viscous fluid. The body surface @B specifies velocity distribu-
tion u ¼ uB, where u and uB are the velocity of the fluid and the
velocity of the solid at the interface @B. For incompressible flow, the
hydrodynamic force on the body B is expressed as

FðtÞ ¼
ð
@B

�pnþ lx� nð ÞdS; (10)

where p is the pressure, x ð¼ r� uÞ the vorticity field, n the normal
vector on @B pointing outside of domain B. From a physics perspec-
tive, the pressure is a noncompact physical variable which cannot
directly relate the force on the body to the local flow structures

characterized by the environmental vortices.48 It is a natural strategy
to replace the pressure term in Eq. (10) with the function of vorticity.

As described in Sec. II, the effect of the flexible plate on the sur-
rounding fluid can be replaced by the body force f in Eq. (19).
Numerically, the body force can be obtained from the Lagrangian
force Fs using a four-point regularized d function.

50 Here, the force on
the body is directly obtained by integrating the body force f of the flow
field [see Fig. 4(b)], i.e.,

FðtÞ ¼ �
ð
Vbf

qf dV ; (11)

where Vbf is the domain of the body force bounded by @Vbf . It is phys-
ically reasonable, and a similar strategy was used in discussion of
impulse theory by Lighthill (Ref. 56, pp. 133–136). Substituting the
hydrodynamic force with flow field variables, i.e., substituting Eq. (3)
into Eq. (11), we have

FðtÞ ¼ �
ð
Vbf

qadV þ
ð
@Vbf

ð�pnþ lx� nÞdS; (12)

where the body force domain Vbf in our numerical simulation is
shown in Fig. 4(c). To be consistent with the four-point regularized d
function, i.e., Eq. (8), the characteristic size of the domain of body
force is chosen R ¼ 3Dx ¼ 3Dy. To confirm the validation of Eq.
(12), the force on the flapping plate calculated by Eq. (12) is compared
with the standard results which are calculated directly by the integral
of the Lagrangian force Fs on the plate. From Fig. 5, it is seen that the
hydrodynamic force (both Fx and Fy) on the plate can be well pre-
dicted by the integral of body force.

To interpret the vortex–body interaction as well as its induced
hydrodynamic loading, a theoretical vorticity-based framework is
needed. Although the minimum-domain impulse theory48 is suffi-
ciently concise in physics and form, it has a critical limitation, i.e., it is
difficult to relate the hydrodynamic force to key physical process at
different evolution stages. The limitation is due to the following rea-
son. The impulse force term and the Lamb-vector integral term
involved are distributed on the same flow structures and of equal order
of magnitude. To solve this problem, here we develop a more concise
expression in the following.

For two-dimensional incompressible flow, the vorticity equa-
tion is

FIG. 2. Numerical validation. The time evolution of the propulsion velocity u1 of the
front plate. Line represents the present result. Symbols represent the results in Zhu
et al.6 and Peng et al.20 In the case, the key parameters are: Ref ¼ 200, A¼ 0.5,
M¼ 0.2, K¼ 0.8, S¼ 1000.

FIG. 3. The grid independence and time step independence studies for case with Ref ¼ 200, A¼ 0.5, M¼ 0.2, K¼ 0.8, S¼ 1000. The time evolution of (a) horizontal hydro-
dynamic force Fx and (b) the lateral displacement yTE of the rear plate.
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dx
dt

¼ l
q
r2xþr� f ; (13)

and any V bounded by R as shown in Fig. 4(b) should satisfy
V � Vbf ; f ¼ 0 on R and outside R. By Eq. (A1), we have

FðtÞ ¼ �
ð
V
qf dV ¼ �

ð
V
x � ðr� qf ÞdV ; (14)

where x is the position vector. Substituting Eq. (13) into Eq. (14), we
can obtain

F ¼ �
ð
V
x � dðqxÞ

dt
� lr2x


 �
dV ;

¼ �
ð
V
x � dðqxÞ

dt
dV þ

ð
R
lx� ndSþ

ð
R
lx � ðn � rxÞdS;

(15)

which directly relates the force to the evolution of vorticity in domain
V as well as its viscous diffusion thereof. The latter can further be
related to viscous friction and the boundary vorticity flux (Ref. 46, p.
125) on outer surface R. Since solid bodies are replaced by the body
forces, and further replaced by vorticity terms using the vorticity equa-
tion, Eq. (15) can be used to solve the hydrodynamic force of multiple
flapping plates and does not involve the domain connectivity issues. In
Sec. IV, the performance of Eq. (15) in predicting the force on the plate

is discussed. It is worth mentioning that the impulse theory48 can be

obtained by substituting d
dt

Ð
Vx � qxdV ¼ ÐVx � dðqxÞ

dt dV � ÐVqx
� udV þ ÐRx � qxðv � nÞdS; into Eq. (15), where v is the velocity of
outer surface R.

Suppose the flow field consists of a set of discrete vortical struc-
tures, we can choose a special R to avoid cutting any discrete vortical
structures, i.e., x ¼ 0 at and near R, then hydrodynamic force is all
contributed by the first term on the right-hand side (RHS) of Eq. (15).
More relevant discussion can be found in Kang et al.48 Some recent
studies show that the force on the body is not directly connected with
the shed vortices,44 but is related to the nearby vorticity directly.48 In
our simulation, the vorticity field can be approximated as discrete. To
analyze the connection between force and vorticity, the strategy of
Kang et al.48 is adopted, i.e., the R cuts the vortices as small as possible
and the domain V is chosen as small as possible. In this way, the
hydrodynamic force, i.e., Eq. (15), especially its first term on the RHS
would be further analyzed in Sec. IV.

For incompressible external flow problem, vorticity is generated
at the boundary and is subsequently convected into the fluid and dif-
fused. To further study the relation of the force to the generation of
vorticity, the domain V is reduced toVbf, so R is replaced by the imagi-
nary boundary of plate @Vbf . In this way, the first term on the RHS of
Eq. (15) is associated with the generation of vorticity in the imaginary
body Vbf. The second term on the RHS of Eq. (15) is the viscous force
resulting from boundary vorticity flux. The third term is the viscous
force, which is identical to the last term in Eq. (12).

IV. EMERGENT DYNAMICS AND FORCE LINKED
TO VORTEX–BODY INTERACTIONS

In the current work, we focus on the underlying dynamic mecha-
nisms behind the collective behavior of two self-propelled plates at low
Reynolds number rather than systematically analyzing the effects of
different parameters. The typical nondimensional parameters used in
our simulations are Ref ¼ 200, A¼ 0.5, M¼ 0.2, S¼ 1000, and
K¼ 0.8. To neglect the influence of the stretching deformation, the
stretching stiffness of the plate S is chosen to be large enough. Usually,
the bending stiffness of a fish is K 	 Oð1Þ.20 These parameters are
identical to those in the “1A” case in Zhu et al.,6 which is of the 2P
wake mode; it means two pairs of vortices are shed within each flap-
ping cycle. The investigation of Zhu et al.6 indicates that the stable

FIG. 4. (a) Schematic of a moving/deforming body through the fluid in an arbitrary control volume V ¼ Vf þ B bounded by R. B is the domain of the body bounded by @B. Vf
is the fluid domain. (b) The sketch of replacing the solid body B by an imaginary body force acting at the same domain of the body. Vbf is the domain of body force bounded by
@Vbf . (c) The black solid line denotes the flapping plate. The domain of body force Vbf is bounded by the red solid line (R ¼ 3Dx ¼ 3DyÞ.

FIG. 5. The evolution of the force on an isolate flapping plate with nondimensional
parameters Re¼ 200, A¼ 0.5, M¼ 0.2, S¼ 1000. Solid lines and circle points
denote the standard results calculated by the integral of Fs and the force calculated
by Eq. (12), respectively.
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configurations of two self-propelled flapping plates in tandem configu-
ration can be categorized into a compact form and a regular form. In
the compact form, the two plates are too close and the vortex–body
analysis is not so clear as that in the regular form. Hence, in the pre-
sent study, we focus on the regular form configuration to analyze the
interplay among actuation, deformation and the vortical flow environ-
ment from the perspective of vortex dynamics. In the regular form, the
stable gap spacing of two plates with identical flapping motions is an
integer multiple of the wavelength traced out by the front plate,
k ¼ jUe=f j [Ue ¼

Ð t0þT
t0 u1ðtÞdt=T]. In our cases, the Reynolds num-

ber referred to propulsion velocity is ReU ¼ Ref � Ue 
 352. The
Strouhal number, St ¼ ATEf =Ue 
 0:23, is within the narrow range
of St of real swimming animals,54 where ATE is the peak-to-peak flap-
ping amplitude of the tail.

In the following, we first generally describe the effect of the wake
vortices of the front plate on the propulsive performance of the rear
plate by changing the flapping amplitude of the rear plate A2 or the
phase difference D/ between the two plates; then we clarify how the
reversed K�arm�an vortex street affects the force on the rear plate by
vorticity dynamics expression mentioned in Sec. III; finally, we investi-
gate whether the regular form is stable if the rear plate is stimulated by
an external horizontal loading within a certain range.

A. Emergent dynamics and configurations
in a two-plate self-propelled system

For two self-propelled plates with identical flapping amplitude
(A1 ¼ A2) and frequency in tandem, the emergent stable configura-
tions with quantized gap spacings in the in-phase scenario have been
noticed.6,20 Here, two plates with different flapping amplitudes and
flapping phase would be further discussed based on the analysis of vor-
tex–body interaction.

Here, first we would like to see the results of the in-phase flapping
cases. The evolutions of gap spacing G for in-phase cases with different
A2 are shown in Fig. 6(a). In all simulations, the flapping amplitude of
the front plate is fixed as A1 ¼ 0:5. It is seen that for the case with A2

¼ A1, G keeps constant first (t< 2.5), then it decreases, and eventually,
two plates reach a stable state with an equilibrium G, which is referred
to as Geq. The procedure can be understood as follows. Initially, the
cruising speeds of the two plates are identical before the follower
encounters the vortices shed from the leader. After it encounters the
vortices, then the follower would accelerate and eventually due to the
vortex–body interaction, G would be passively adjusted to Geq. In
the equilibrium state, the two plates cruise with an identical cruising
speed and G 
 k, where k ð¼ j Ð T0 u1ðtÞdtj ¼ 5:5263Þ is the stream-
wise spatial period of the reversed K�arm�an vortex street generated by
the front plate. Actually, not only Geq 
 k but also Geq 
 2k, 3k…::
are equilibrium locations if the initial G is close to those Geq.

For the other cases with different A2, if the follower’s flapping
amplitude A2 > A1, e.g., A2 2 ½0:5; 0:65�, the situation looks similar
to that of A1 ¼ A2 ¼ 0:5, i.e., G decreases initially and then adjust to a
constant. However, if A2 is too large, e.g., A2 ¼ 0:7, the follower makes
much effort to flap than the leader because generally speaking, a larger
flapping amplitude means more energy input. In this way, G continu-
ously decreases and the follower may collide with the leader. On the
other hand, if A2 is smaller than 0.5, e.g., A2 ¼ 0:4, the stable configu-
ration may still emerge. However, in the case, because the follower
makes less effort,G increases initially and it has a risk of falling behind.
If A2 is further smaller, e.g., A2 ¼ 0:35, G would gradually become
large enough so that two plates cruise independently with different
speed. There is no stable configuration. It is also noticed that for all of
the above cases with stable configuration, the equilibrium gap spacing
Geqð¼ Ð tþT

t G=TdtÞ decreases as A2 increases [see Fig. 6(a)].
For all of the cases having a stable configuration, the rear plate

would be trapped through different vortex–body interaction. The
interaction is characterized by superimposing the leading-edge trajec-
tories of the rear plates on the vortex street generated by the front
plate. The corresponding trajectories are shown in Fig. 6(b).
According to Zhu et al.,6 the trajectories of the rear plate would be
locked onto the vortex centers. However, “locking onto the vortex cen-
ters” is not so accurate. Strictly speaking, locking onto the vortex cen-
ters means that the head of the plate passes through the centers of the

FIG. 6. (a) Gap spacing as a function of time for in-phase scenario (D/ ¼ 0). In all cases A1 ¼ 0:5, while A2 ranges from 0.35 to 0.7. k ð¼ Ð t0þT
t0 u1ðtÞdt ¼ 5:5263Þ is the

streamwise spatial period of the reversed K�arm�an vortex street generated by the front plate. (b) Superimposition of the leading-edge trajectories of the rear plates with
A2 ¼ 0:4, 0.5, and 0.6 on the vortex street.
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shedding vortices ahead of it at its maximum/minimal lateral locations
(y2 ¼ 6A2; _y2 ¼ 0). It is seen from Fig. 6(b) that in all cases includ-
ing the case of A2 ¼ 0:5, the trajectory of the rear plate does not pass
through the vortex core exactly. Actually, as far as we know, besides
the “vortex locking” mode, “slaloming between the vortex cores” also
has been found as an alternative vortex–body interaction for passive
oscillations of two tandem flexible filaments.8 Slaloming between the
vortex cores means that the head of the rear plate passes through the
middle points between each pair of vortices ahead of it. Here, we found
that for the stable self-propulsive tandem configurations, the trajecto-
ries of the rear plate may be neither slaloms between nor is locked
onto the vortex cores, and the state between these two modes may be
more common.

From Fig. 6(b), we can see that the trajectory in the case of
A2 ¼ 0:6 is close to, but not exactly, the “locking” mode. The trajec-
tory in the case of A2 ¼ 0:4 is close to the “slaloming” mode. In the
above two cases, at equilibrium states, both cruising speeds are identi-
cal to that of an isolated plate flapping with A¼ 0.5. To explain it, the
effective flapping velocity of the rear plate ve is introduced. It means
the relative vertical velocity of the leading edge of the rear plate with
respect to the local vertical velocity induced by the reversed K�arm�an
vortex street. According to the reduced-order model (ROM),31,34 the
time-averaged thrust on the rear plate (�T 2) is proportional to the
square of its effective flapping velocity ve, and the time-averaged drag
(�D2) depends on the square of the rear plate’s cruising speed. Since, at
equilibrium states, the cruising speed is fixed, the time-averaged drag
on the rear plate (�D2) can also be approximated as fixed. Therefore, at
equilibrium states, even when the flapping amplitude of the rear plate
(v2) changes, the time-averaged thrust (�T 2) is unchanged, and its
effective flapping velocity ve is similar to the flapping velocity ðv1Þ of
the front plate with A¼ 0.5. For an isolated plate with A¼ 0.6, its
cruising speed should be larger than that of the isolated case A¼ 0.5.
The locking interaction mode in the cases of A2 ¼ 0:6 inhibits the
full-speed cruising of the rear plate. The inhibition is due to the smaller
ve compared to that of an isolated plate. In this way, less vorticity and
less thrust are generated on the plate, which inhibits the full-speed

cruising. For the slaloming interaction mode in the case of A2 ¼ 0:4,
the situation is reversed. More details can be found in Sec. IVB.

To identify the effect of phase difference D/ on stable configura-
tions, as shown in Fig. 7(a), we explored the parameter space of stable
configurations with different combinations of flapping amplitude A2

and phase difference D/. It is seen that whether or not stable configu-
rations can be formed is independent of the phase difference. For clar-
ity, cases of A1 ¼ A2 ¼ 0:5 but D/ 6¼ 0 are discussed. For all phase
difference, stable configurations emerge spontaneously. Figure 7(b)
shows the equilibrium gap spacing Geq=k as a function of D/. It is
seen that for each G0, G

eq is a piecewise linear function of D/. It is also
seen that for each G0, at a certain D/ there is a jump of Geq. The jump
of Geq is the streamwise spatial period of the reversed K�arm�an vortex
street generated by the front plate, k. Because of the spatial periodicity
of the vortex street, for a specific G0, there is a unstable critical phase
lag D/c. If D/ < D/c, the rear plate eventually converges to the rela-
tive rearward equilibrium position, and vice versa.

Although in all cases Geq may be different, we found that in all
cases, the trajectories of the head of the rear plate with respect to the
shedding vortices are all identical to the in-phase case, i.e., D/ ¼ 0
[the black solid line in Fig. 6(b)]. It seems that the rear plate can adjust
Geq to match the specific vortex–body interaction. In other words, the
phase difference does not affect the vortex–body interaction.

B. Force on the rear plate in terms of local vortical
structures

In all of the above freely self-propelled cases, at the equilibrium
states, the time-averaged hydrodynamic forces on the rear plate are
zero. However, we want to investigate how different vortex–body
interactions lead to nonzero hydrodynamic force. To figure out the
connection, we created an arbitrary vortex–body interaction in the fol-
lowing way. For convenience, the simulations were performed in an
inertial coordinate system moving with velocity Ue in the negative x-
direction, where Ue is the equilibrium cruising speed of the self-
propulsive case that we obtained in advance. In the inertial frame, the

FIG. 7. (a) Parameter space ðD/; A2Þ for the stability of orderly configurations of two independently flapping plates with A1 ¼ 0:5. (b) Equilibrium gap spacing Geq=k as a
function of phase difference D/ for three different initial gap spacing G0. In all cases A1 ¼ A2 ¼ 0:5. Each point denotes a case.
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oncoming flow has a uniform longitudinal velocity of Ue and the lon-
gitudinal locations of the plates are fixed. From about discussion, we
know that in self-propulsive cases with different D/, the rear plate
would automatically adjust the gap spacing to achieve the identical
vortex–plate interaction. Hence, all kinds of vortex–plate interactions
may be achieved through fixing the gap spacing Ga but adopting dif-
ferent D/ or alternatively, fixing D/, e.g., D/ ¼ 0 but adopting differ-
ent Ga. Since the two ways to achieve the different vortex–plate
interaction are analogous, in the following discussion we adopted the
latter way (D/ ¼ 0 is fixed but Ga is changed).

Figure 8(a) shows the time-averaged horizontal force
�Fx ð¼

Ð tþT
t FxðtÞdt=TÞ on the rear plate as a function of Ga for the in-

phase scenarios (D/ ¼ 0). It is seen that �Fx changes approximately
periodically with Ga, with a period of k. There are several discrete
points with �Fx ¼ 0, such as Ga ¼ 1:03k; 1:50k; 2:03k;…. Only the
gap spacings with negative d�Fx=dGa, i.e., Ga ¼ 1:03k; 2:03k,…, corre-
spond to the Gas of the self-propulsive stable configurations. The net
horizontal force near the Gas is a springlike restoring force as discussed
by Ramananarivo et al.13 and Peng et al.20

As is implied by Figs. 6 and 8(a), the shedding vortices can
play either a destructive or constructive role in different vortex–
body interactions. To identify the possible formation of vorticity
field of different interactions, we calculated the strength of vortic-
ity generated by the rear plate in a period. The strength of newly
generated vorticity on the rear plate is obtained by subtracting the
strength of the closest upstream vortex pair from the strength of
the closest downstream vortex pair. It is noticed that in the 2P
wake shed by the front plate, the strengths of the stronger vortex
(
 2) and weaker vortex (
 1) are of the same order of magnitude
as that of the newly generated vorticity from the rear plate. From
Fig. 8(a), we can see that the strength of newly generated vorticity
on the rear plate is inversely related to �Fx . According to the
reduced-order model,31,34 we can get a simple understanding that
the time-averaged drag (�D2) on the rear plate almost does not
change with Ga. Combing Fx ¼ ��T 2 þ �D2, we can conclude a sim-
ple relationship between the hydrodynamic thrust and vorticity
generation on the rear plate: if the vorticity generation on the rear
plate is suppressed, the thrust effect on it is weakened; if the vortic-
ity generation on the rear plate increases, the thrust effect will be
enhanced. In addition, using the simplified model,34 we can obtain

the reduced-order relationship between the time-averaged hydro-
dynamic force �Fx and the gap spacing Ga, i.e.,

�Fx ¼ ct cos 2p
Ga þ 1

k

� �
� ct

2
; (16)

where ct is the thrust coefficient and selected as 0.8.
34 Figure 8(b) com-

pares the time-averaged hydrodynamic force �Fx calculated by the
reduced-order model [Eq. (16)] with the present result. It is seen that
the simplified model can only predict the trend of horizontal force �Fx

with gap spacing Ga, but not the exact magnitude of the force.
Here, we choose three typical gap spacings, Ga ¼ 0:81k, 1:03k,

and 1:27k, to clarify how the vortex–plate interaction influences the
force on the rear plate. As can be seen from Fig. 9(a),
Ga ¼ 0:81k; 1:03k, and 1:27k correspond to the maximum, zero, and
minimum �Fx , respectively. To analyze the vortex–body interaction, in
Fig. 9(a), the trajectories of the leading edge of the rear plate are super-
imposed on the vortex street generated by the isolated front plate. The
instantaneous vorticity fields for the three cases at t=T ¼ 0 are shown
in Figs. 9(b)–9(d) (Multimedia view). We can see that in the case of
Ga ¼ 0:81k [see Fig. 9(b)], the rear plate passes through the cores of
the stronger vortices within each vortex pair. It suppresses the defor-
mation of the plate (figure is not shown) and further suppresses the
generation and separation of vorticity on the rear plate. The new shed
vortex by the rear plate will be entangled with the environmental vor-
ticity of the same sign. For the case of Ga ¼ 1:27k [see Fig. 9(d)], the
rear plate slaloms between the vortex cores, which enhances the defor-
mation of the plate, and further enhances the generation and separa-
tion of vorticity on the rear plate. The new shed vortex by the rear
plate will be entangled with the environmental vorticity of the inverse
sign. For the case of Ga ¼ 1:03k [see Fig. 9(c)], the rear plate passes
through a small portion of the environmental vortex, which makes the
deformation of the rear plate similar to that of the front plate.

To quantitatively investigate the relationship between the force
on the rear plate and the local flow structures around it, the force for-
mula [Eq. (15)] is used to calculate the force. The domain V in the for-
mula is chosen to contain the nearby environmental vortices and the
vortices connecting with the rear plate [see Fig. 10(c)]. In the three
cases, the forces on the rear plate have been well predicted and they
are consistent with the direct integral of Lagrangian force Fs on the
plate (figure is not shown). Our previous investigation48 has also

FIG. 8. (a) The time-averaged x-component force �Fx and the strength of the newly generated vorticity on the rear plate in a cycle vs the fixed gap spacing Ga=k for in-phase
flapping. (b) Comparison of time-averaged hydrodynamic force �Fx calculated by the reduced-order model (ROM) [Eq. (16)] with the present numerical results.
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provided evidence for the reliability of Eq. (15). The horizontal forces
Fx contributed by the moment of the vorticity derivative
FMVDð¼ �ÐVx � dðqxÞ

dt dVÞ for the three cases are shown in Fig. 10(a).
The standard results are calculated by the direct integral of Lagrangian
force Fs on the plate. It is seen that the x-component of FMVD is close
to that of the standard results. Therefore, the hydrodynamic force is

mainly contributed by FMVD. The contribution from the surface inte-
gral term on R is minor. Hence, the force is strongly dominated by the
vortical structures close to the rear plate.

The contribution of the reversed K�arm�an vortices is also calcu-
lated. Its direct contribution is negligible. Taking the case of Ga ¼ 1:27k
as an example [see Fig. 10(b)], we found that the forces contributed by

FIG. 9. (a) Superimposition of the leading-edge trajectories of the rear plates on the vortex street generated by the front plate for Ga=k ¼ 0:81 (black solid line),
Ga=k ¼ 1:03 (blue solid line) and Ga=k ¼ 1:27 (red solid line). The instantaneous vorticity fields of the three cases at t=T ¼ 0 are shown in (b), (c), and (d), respectively.
Multimedia views: https://doi.org/10.1063/5.0079818.1; https://doi.org/10.1063/5.0079818.2; https://doi.org/10.1063/5.0079818.3

FIG. 10. (a) The evolution of horizontal hydrodynamic force calculated directly by the integral of Lagrangian force Fs on the plate (solid lines) and that contributed by
FMVD ¼ �ÐVx � dðqxÞ

dt dV (circles) for the three cases. (b) The evolution of Fx for the case of Ga ¼ 1:27k, where F� and Fþ are integrated on domains V� and Vþ [as
shown in (c)], respectively. (c) The instantaneous vorticity distribution at t=T ¼ 1=4 for the case of Ga ¼ 1:27k.
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the positive and negative stronger vortices (Fþ and F�), whose domains
are denoted by Vþ and V� in Fig. 10(c), are almost zero over the entire
period. It indicates that the influence of the reversed K�arm�an vortices
on the force of the rear plate is not by its direct contribution (Fþ and F�
can be ignored), but in some indirect way.

Next, we will explain how the reversed K�arm�an vortex indirectly
affects the generation of vorticity on the rear plate and thus affects the
hydrodynamic force. When the rear plate encounters the oncoming
flow induced by the reversed K�arm�an vortex street, there is an effective
vertical flapping velocity of the rear plate ve. Variations of ve in a period
for the three cases are shown in Fig. 11(a). For the case of Ga ¼ 0:81k,
ve magnitude is essentially small, which leads to less vorticity generation
during a period. For the case of Ga ¼ 1:27k, a larger magnitude of ve of
the rear plate would generate stronger vortices close to the leading edge.
For the case of Ga ¼ 1:03k, the curve of ve of the rear plate almost have
the same magnitude as that of the front one, but with a phase shift. The
strength of the new vorticity generated on the rear plate approximately
has the magnitude as that of the reversed K�arm�an vortices shed by the
front one. The distributions of dx=dt on the rear plate at two typical
moments t1 and t2, when instantaneous minimum and maximal hori-
zontal forces, i.e., FxMIN and FxMAX are generated, respectively, are
shown in Fig. 11(b). It is seen that the vorticity is mainly generated
around the leading edge. At t ¼ t1, there is negative vorticity generated
on the leading edge, and the case of Ga ¼ 1:03k generates the strongest
negative vorticity near the leading edge among all of the three cases.

To quantitatively relate the force on the rear plate to the genera-
tion and evolution of vorticity on it, the domain V of the force formula
Eq. (15) is contracted to the body force domain Vbf. The force on the
plate can be expressed as

F ¼ FG&BVF þ FF ; (17)

FG&BVF ¼ �
ð
Vbf

x � dðqxÞ
dt

dV þ
ð
@Vbf

lx � ðn � rxÞdS; (18)

FF ¼
ð
@Vbf

lx� ndS; (19)

where FG&BVF is contributed by the generation of vorticity dðqxÞ=dt
and viscous force resulting from the boundary vorticity flux ðn � rxÞ,
and FF can be regarded as the friction effect. Figure 12(a) shows that
Eq. (17) can predict the force well. The green points and lines in Fig.
12 correspond to the forces on the front plate. As shown in Fig. 12(b),
for different vortex–plate interaction, the horizontal force contributed
by the friction term Eq. (19) keeps positive with little variation over
time. The difference of FF � ex between different cases is little. The
result is consistent with the prediction of reduced-order model, which
shows that the drag on the rear plate D2 is similar to that of the front
plate D1. The variation of F is mainly contributed by the counterbal-
ance and synergy between vorticity generation and boundary vorticity
flux on the plate, i.e., FG&BVF. In a reduced order sense, the thrust
on the plate can be approximately −FG&BVF � ex . It is also seen from
Figs. 12(b) and 9 that the thrust effects are enhanced for slaloming
interaction mode and are weakened for locking interaction mode.

The generation of vorticity mainly happens at the leading edge of
the rear plate as shown in Fig. 11(b). Figure 13(a) shows that the
boundary vorticity flux n � rx mainly happens near the leading edge
of the rear plate at t ¼ t1. It is seen that, with the increase in Ga, the
boundary vorticity flux on the upper surface of the rear plate changes
more dramatically, because of more flow separations occurring on the
upper surface [see Figs. 9(b)–9(d)]. Figure 13(b) shows that the bound-
ary vorticity flux also mainly happens near the leading edge at t ¼ t2,
except there is a significant boundary vorticity flux at the trailing edge
in the case of Ga ¼ 1:27k. This instance t ¼ t2 usually corresponds to
the moment with a flapping speed of almost zero, when the inertia of
flow plays a major role.

C. Stable configuration of the rear plate with
an external horizontal loading

To investigate whether the stable configurations would emerge if
the rear plate is stimulated by an external horizontal loading, we simu-
late the self-propulsion of two flapping plates with identical flapping
motions swimming in tandem. Here, in all cases, different external

FIG. 11. (a) The evolution of the effective vertical flapping velocity of the rear plate ve. (b) The distribution of dx=dt along the plate at instances when maximal and minimum
horizontal forces, i.e., FxMAX and FxMIN, occur.
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horizontal loadings FxE are applied to the leading edge of the rear plate.
The result is shown in Fig. 14(a). It is seen that when
FxE 2 ½�0:3; 0:3�, the equilibrium states still emerge and in each equi-
librium state, the rear plate is trapped in the orderly configuration. In
addition, Geq changes linearly with FxE. It is noticed that when jFxEj is
large enough, e.g., out of the range ½�0:3; 0:3�, no stable configuration
would be formed and terminally the two plate cruise independently.

The trajectories of the rear plates superimposing on the vortex
street in the cases of FxE ¼ �0:3, 0, and 0.3 are shown in Fig. 14(b).
They represent different vortex–body interactions. For the case of FxE
¼ 0.3, the vortex–body interaction mode is the slaloming mode. The
rear plate would obtain an enhanced thrust to balance the external
loading. For the case of FxE ¼ �0:3, the plate would obtain a

weakened thrust by a mode close to the locking mode. Hence, to bal-
ance the external force, a reversed hydrodynamic force is achieved
through a specific mode of vortex–plate interaction.

V. CONCLUDING REMARKS

We studied the hydrodynamic force induced by vortex–body
interactions in orderly formations of two flapping flexible plates in a
tandem configuration in a two-dimensional incompressible viscous
fluid. We simulated two types of settings for the two-plate self-
propelled system: (i) two plates with independent flapping amplitude,
Ai; (ii) two plates with identical flapping amplitude, and an external
horizontal loading FxE is exerted on the rear plate. It is found that,
whether the rear plate changes its flapping amplitude or is exerted an

FIG. 12. The evolution of the hydrodynamic force on the plate in half a cycle. The forces on the rear plates with Ga=k ¼ 0:81; 1:03; 1:27 and on the front plate are denoted
by color black, blue, red and green, respectively. (a) The forces calculated by Eq. (17) (circles) and the integral of the Lagrangian force Fs (solid lines). (b) The evolution of
force components FG&BVF and FF, calculated by Eqs. (18) and (19), respectively.

FIG. 13. The distribution of boundary vorticity flux n � rx on @Vbf at the instances with (a) minimum horizontal force FxMIN (t ¼ t1) and (b) maximal horizontal force FxMAX (t
¼ t2) during the downward flapping process. The inset in (a) is a local zoom-in view.
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external horizontal loading, the vortex street shed by the front plate
has a certain ability to trap the rear plate into the orderly configura-
tion. In other words, at each equilibrium state, the rear plate may be
trapped into a specific vortex–plate interaction mode and maintain the
same propulsion velocity as the front plate. Vortex–body interaction is
generally characterized by the trajectory of the rear plate with respect
to the oncoming reversed K�arm�an vortex street. From simulations of
case (i), we found that the stability of orderly configurations and the
vortex–plate interaction are not affected by phase difference D/.

To clarify the origin of the hydrodynamic force on the rear plate
in different vortex–plate interaction, vorticity-based representation
and interpretation are proposed. We found the hydrodynamic force
on the flapping plate is strongly dominated by the vortical structures
close to the flapping plate, and more specifically, it is directly related to
the vorticity generation on the plate as well as viscous forces resulting
from its subsequent evolution.

To our knowledge, it is the first time to use vorticity-based
representation instead of the simplified analytical model to quanti-
tatively explain the physical process of the influence of vortex–
plate interaction on the hydrodynamic force of collective motion.
Actually, the reversed K�arm�an vortices would indirectly affect the
hydrodynamic force exerted on the rear plate by modulating the
generation and distribution of vorticity on it. When the rear plate
is slaloming between vortex cores or close to the state, the vertical
momentum of the vortices shedding from the front plate can be
successfully harvested. Under the circumstances, the vorticity gen-
eration and the thrust effect are enhanced. Therefore, the rear plate
can reduce its flapping amplitude. In this way, the hydrodynamic
advantage is achieved by the rear plate. On the other hand, the vor-
tex locking behavior of the rear plate is not favorable, because the
vorticity generation and the thrust effect are suppressed. There is
no hydrodynamic advantage for the rear plate.

Finally, it should be pointed out that although the geometric
shape and the actuation of our model are simplified, the current work
is still essential for understanding the collective behaviors in macro-
scopic swimmers. It also inspires some constructive applications. For

example, the follower can exploit more surrounding vortical momen-
tum by appropriately reducing its flapping amplitude while maintain-
ing the stable configuration.
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APPENDIX A: DERIVATIVE MOMENTUM
TRANSFORMATION

A vectorial integral identity, named derivative-moment-trans-
formation, is used in developing the theory: in n-dimensional space
with n¼ 2, 3, set k ¼ n� 1, for any piecewise differentiable vector
field g, there isð

V
gdV ¼ 1

k

ð
V
x � ðr � gÞdV � 1

k

ð
@V
x � ðn� gÞdS; (A1)

where x is the position vector and @V is the boundary of domain V.
Note that the equation is independent of the origin of position
vector.

FIG. 14. (a) Gap spacing Geq=k as a function of the constant external loading FxE on the rear plate. (b) Vortex–body interaction in three cases with different FxE.
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